
DATEX II V2.3

SOFTWARE DEVELOPER’S
GUIDE

Document version: 2.3

30 September 2014

European Commission

Directorate General for Mobility and Transport

Copyright © 2014

Page 1 of 32

Page 2 of 32

Document control:

Prepared by :

 Date Comment Version

ES5 Technical
Group

30/06/2011 Updated by Jonas JäderBerg, Jean-Philippe
MECHIN, Daniel ODDON and Stéphane VERGIER

1.2

ES5 Technical
Group

31/05/2013 2.2

ES5 Technical
Group

30/09/2014 2.3

Reviewed by :

 Date Comment Version

ES5 Technical
Group

30/06/2011 1.2

ES5 Technical
Group

31/05/2013 2.2

ES5 Technical
Group

30/09/2014 2.3

Approved by :

 Date Comment Version

ES5 Technical
Group

30/06/2011 Authorization for publication 1.2

ES5 Technical
Group

31/05/2013 2.2

ES5 Technical
Group

30/09/2014 2.3

Page 3 of 32

TABLE OF CONTENTS

1. Introduction ... 5
1.1. Objectives ... 5
1.2. Document structure ... 5
1.3. DATEX II reference documents ... 5

2. DATEX II exchange system .. 7
2.1. Useful documents ... 7
2.2. Architecture and main subsystems ... 7
2.3. Operating modes ... 8
2.4. Exchange profiles .. 8

3. DATEX II data ... 10
3.1. Data model .. 10
3.2. Data dictionary .. 10
3.3. XML schema generation tool ... 10
3.4. XML Schema ... 10

4. Client Pull with http ... 12
4.1. Content.. 12
4.2. Supplier system ... 12
4.3. Client system ... 12
4.4. Interoperability http server <-> Clients using Web services ... 12

5. Client Pull with Web Services .. 15
5.1. Content.. 15
5.2. Supplier system ... 15
5.2.1. Advice for building a Supplier with Apache foundation Axis 1.4.1 .. 15
5.2.2. Advice for building a Supplier with Microsoft .Net .. 16
5.2.3. Clients .. 17
5.2.4. Interoperability Web Services Suppliers <-> simple http Clients .. 17
5.3. Client system ... 18
5.3.1. Advice for building a Client with Apache foundation Axis 1.4.1.. 18
5.3.2. Advice for building a Client with Microsoft .Net : .. 19
5.3.3. Suppliers .. 22
5.3.4. Interoperability Web Services Clients <-> simple http Suppliers .. 27

6. Supplier Push with Web Services .. 29
6.1. Content.. 29
6.2. Supplier system ... 29
6.3. Client system ... 29

7. General issues ... 31
7.1. A secure way to produce valid XML Files .. 31
7.2. Validity of the produced XML Files .. 31
7.3. How to distinguish Snapshot and on occurrence exchanges .. 31

Page 4 of 32

Introduction

5

Page 5 of 32

1.1. Objectives

This document is mainly targeted towards software developers who are in charge of DATEX II
developments.

Software developers should first read the [User Guide] which is an introduction to DATEX II and will

assist in the understanding of the other DATEX II documents.

1.2. Document structure

The document is structured into seven chapters with the following content:

 Chapter 1 “Introduction” gives a brief overview of the document’s objectives and structure,

 Chapter 2 “DATEX II exchange system” gives information on useful documents,
architecture and operating modes,

 Chapter 3 “DATEX II data” is related to the exchange data content,

 Chapter 4, 5 and 6 give explanations on the different operating modes and profiles

o Chapter 4 “Client Pull with http” describes the operating mode “Client Pull” with
only http usage

o Chapter 5 “Client Pull with Web Services” describes the operating mode “Client
Pull” with usage of Web Services over http

o Chapter 6 “Supplier Push with Web Services” describes Push systems with Web
Services over http

 Chapter 7 provides answers to some frequently asked questions.

1.3. DATEX II reference documents

DATEX II documents can be downloaded from the DATEX II web site http://www.datex2.eu.

Reference in this document DATEX II document Document
version

Date

[Modelling methodology] DATEX II Modelling methodology 2.3 30-09-2014

[Data model] DATEX II Data model 2.3 30-09-2014

[Schema generationtool] DATEX II Schema generation tool 2.3 30-09-2014

[Exchange PSM] DATEX II Exchange PSM 2.3 30-09-2014

[WSDL] DATEX II Push/Pull 2.3 30-09-2014

[XML schema] DATEX II v2.3 schema 2.3 30-09-2014

 Supporting documentation

[User guide] DATEX II User’s guide 2.3 30-09-2014

[Software developers guide] DATEX II Software developer’s guide 2.3 30-09-2014

[XML schematoolguide] DATEX II Schema generation tool
guide

2.3 30-09-2014

[Extension guide] DATEX II Extension guideline 2.3 30-09-2014

[Profile guide] DATEX II Profile guideline 2.3 30-09-2014

[Exchange PIM] DATEX II Exchange PIM 1.01 08-02-2005

1. Introduction

http://www.datex2.eu/

Page 6 of 32

DATEX II exchange system

Page 7 of 32

2.1. Useful documents

The [User Guide] has a chapter called “Exchange specifications” which introduces DATEX II

exchanges.

The reference document [Exchange PSM deals with the exchange process. It presents, definitions,

subsystems, use cases, metadata, and operating modes; it is specific for one platform, which has
been chosen for DATEX II, called “Web Services over http”..

2.2. Architecture and main subsystems

For this architecture, an important diagram is the analysis diagram “Subsystems”:

od SubSystems

DATEX 2 System

PublisherSubSystem Deliv erySubSystem

ManagementSubSystem

ClientSupplier

ManagementAdministrator SubscriptionServ ice OperatingAdministrator

receivingState

data
publicationData

deliveryStatesubscriptionpartnerList subscriptionList

catalogue

physicalDataDelivery

Among the 3 subsystems, DATEX II only describes the delivery subsystem: that means that each
developer is free to build:

 On the Supplier side

o The Publisher subsystem which elaborates data to be delivered (the Payload),

o The way to feed the Publisher subsystem (for instance, depending on the hardware
and software architecture, a specific interface with a Traffic Centre, a local database,
…),

o The management subsystem:

 For partner list management, if used (mainly, for authentication),

 For catalogue management, if any (publication types available, locations
available, …)

 For subscriptions management, if any (for instance, locally by an
administrator or with a Client browser with dynamic HTML pages, …),

o The exchange administration, if any (survey of the delivery state, link with the
Publisher system, …)

 And, on the Client side, the way to use DATEX II data (man machine interface, database …).

2. DATEX II exchange system

Page 8 of 32

2.3. Operating modes

The choice of operating modes to be developed is fundamental.

There are 3 possible operating modes for data delivery:

1 Publisher Push on occurrence Data delivery is initiated by the Publisher every time
data is changed

2 Publisher Push periodic Data delivery is initiated by the Publisher on a cycle
time basis

3 Client Pull Data delivery is initiated by the Client and data is
returned as a response

The choice has to be made with users because:

 it can be related to data publication types,

 it has an impact on the transmission delay when data is available,

 it has an impact on complexity (for instance, “Publisher Push on occurrence” delivers data
as soon as it is available, but is more complex to develop for situation publications, for
instance).

2.4. Exchange profiles

For the "Client Pull" operating mode, two implementation profiles have been defined for
implementing this operating mode over the Internet: by direct use of the HTTP/1.1 protocol or via
Web Services over HTTP.

For the "Supplier Push" operating mode, one platform has been defined using Web Services over
HTTP.

The common corresponding document, describing all operating modes and both profiles for Client
Pull as well as their interoperability, is the [Exchange PSM].

Following a chapter concerning the data to be exchanged, the subsequent chapters detail the
exchange process for each kind of system:

 Client Pull with http only,

 Client Pull with Web Services,

 Supplier Push with Web Services.

Page 9 of 32

DATEX II data

Page 10 of 32

3.1. Data model

Data to be exchanged are described in the DATEX II data model. The [User Guide] helps

understand this model.

3.2. Data dictionary

All DATEX II definitions are included in the data model and can be read by the Enterprise Architect
tool but, to be more readable and normalized in a document, definitions have been automatically
extracted from the data model with a special tool in order to constitute a dictionary.

At the present time, this “dictionary” is available on the Web Site with HTML pages and allows
navigation between classes, attributes, enumerations …

The methodology and the semantics of the modelling structures which have been used for
modelling is described in document [Modelling methodology].

3.3. XML schema generation tool

The data model is defined at a level that is independent from technologies, consistent with MDA
(model driven architecture) principles. However for DATEX II a tool has been built which is able to
generate an XML schema directly from the data model.

The tool is described in the document [XML schema generation tool]. It is available on the Web

site.

3.4. XML Schema

The schema generation process is configurable and allows for data definitions to be included in the
schema and is therefore self-descriptive. Questions concerning the schema can be raised via the
DATEX II web site.

3. DATEX II data

Page 11 of 32

Client Pull with http

Page 12 of 32

4.1. Content

This chapter describes the fundamental details of a service employing “Client Pull with http” which is
the simplest implementation of DATEX II:

 There is no subscription,

 The Publisher periodically creates the payload,

 The payload is available on one URL for all authorized Clients.

On the Supplier side, different sets of data can be available via different addresses (URLs). In this
case, the data is considered to be available via different services.

4.2. Supplier system

The Publisher subsystem elaborates data conforming to the DATEX II XML schema and the delivery
subsystem makes it available on one URL.

The Supplier has to respect the clauses defined in document [Exchange PSM] at chapter “Client

Pull simple http server profile”.

The Clients of this Supplier system can be:

 Client systems with simple http GET requests (see next paragraph),

 Client systems using Web Services (refer following chapter).

4.3. Client system

Periodically:

 The Client requests data (with http GET) to Suppliers using only http or to Suppliers using
Web Services, at the specified URL.

 After reception, the Client manages data and errors from the Suppliers.

The Client has to respect the clauses defined in document [Exchange PSM] at chapter “Client Pull

simple http server profile”.

4.4. Interoperability http server <-> Clients using Web services

In order to be interoperable with Clients using Web Services, the Supplier system must provide a
(static) SOAP wrapper with the according SOAP namespace definitions.

The following sample illustrates the envelope of the d2LogicalModel XML node:

<?xml version="1.0" encoding="UTF-8"?>
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:env="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:xdt="http://www.w3.org/2004/07/xpath-datatypes"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 env:schemaLocation="http://schemas.xmlsoap.org/soap/envelope/

 http://schemas.xmlsoap.org/soap/envelope/">

 <soapenv:Body>
 <d2lm:d2LogicalModel xmlns:d2lm="http://datex2.eu/schema/2/2_0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="D2LogicalModel DATEXIISchema_2_2_0.xsd">
 <xs:schema xmlns:D2LogicalModel="http://datex2.eu/schema/2/2_0"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 targetNamespace="http://datex2.eu/schema/2/2_0"
 elementFormDefault="qualified"
 attributeFormDefault="unqualified">
 <d2lm:exchange>
 ...
 </d2lm:exchange>
 <d2lm:payloadPublication>
 ...

4. Client Pull with http

http://schemas.xmlsoap.org/soap/envelope/
http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2004/07/xpath-datatypes
http://www.w3.org/2001/XMLSchema
%22http:/schemas.xmlsoap.org/soap/envelope/%20http:/schemas.xmlsoap.org/soap/envelope/%22
%22http:/schemas.xmlsoap.org/soap/envelope/%20http:/schemas.xmlsoap.org/soap/envelope/%22

Page 13 of 32

 </d2lm:payloadPublication>
 </d2lm:d2LogicalModel>
 </soapenv:Body>
</soapenv:Envelope>
1.1. Interoperability http port

For security reasons, more and more server centres prohibit the use of other TCP ports than 80.

To ensure a high level of interoperability and also to reduce the management on firewall, it would be
wise to implement the standard http port 80.

Page 14 of 32

Client Pull with Web Services

Page 15 of 32

5.1. Content

This chapter describes the fundamental details of a service employing “Client Pull with Web
Services”:

 There is no online subscription,

 The Publisher periodically creates the payload,

 The payload is available on one URL for all authorized Clients.

On the Supplier side, different sets of data can be available via different addresses (URLs). In this
case, the data is considered to be available via different services.

5.2. Supplier system

Recommendation: A Publisher can periodically create a payload and makes it available for the
Supplier Push delivery subsystem. It may be more efficient than building a payload each time a
Client requests data, although this depends on your system architecture.

The delivery subsystem is built with the DATEX II “Pull WSDL” which is available on the DATEX II
Web site.

Two frameworks have already been used for tests, one based on Apache foundation Axis 1.4.1 and
the other on Microsoft .Net 2.0.

The Axis2 has also been published and its use is slightly different than with Axis 1 as the philosophy
is modified. It requires a good level of practice of this environment. Nevertheless the Axis 2 solution
is recommended for sustainability as it is being extensively used for large projects worldwide.

A third solution, JAX WS, is now available and included in Java development platform JDK 1.6 .
That platform is used directly with the standard notation. The implementation is quite direct and
easier than with Axis.

This last framework can be completed with the CXF library from The Apache Software Foundation.
As with the direct use of JDK, CXF will pose less constraint than Axis and will facilitate the
integration with Spring framework and also for developing systems based on Enterprise Service Bus
like ServiceMix.

The PHP programming language can also be used: since version 5 Web Services are natively
supported. The SOAP extension has to be activated by adding the line extension=php_soap.dll in
the php.ini configuration file.

Documentation to help implementation can be found on http://www.php.net/manual/en/ref.soap.php

5.2.1. Advice for building a Supplier with Apache foundation Axis 1.4.11

- Use WSDL2Java tool with option - - server-side to create Web Service skeleton Java classes.

- Edit the impl.java class generated by WSDL2Java tool. For instance:

/**

 * ClientPullSoapBindingImpl.java

* This file was auto-generated from WSDL by the Apache Axis 1.4.1 WSDL2Java emitter.

 */

package org.datex2.wsdl.ClientPull;

import java.util.Calendar;

import org.apache.axis.MessageContext;

import org.apache.axis.encoding.DeserializationContext;

import org.apache.axis.encoding.Deserializer;

1 This example is maintained is this document because already deployed solutions don’t move to Axis2

and in case of maintenance or extension of such systems, it could be useful for the developers to

know the reason of the header of the classes.

5. Client Pull with Web Services

Page 16 of 32

import org.apache.axis.message.EnvelopeHandler;

import org.apache.axis.message.SOAPHandler;

public class ClientPullSoapBindingImpl implements org.datex2.wsdl.ClientPull.ClientPullInterface{

 public D2LogicalModel_pkg.D2LogicalModel getDatex2Data() throws java.rmi.RemoteException {

// body of Web Service method

 }

}

Deploy the Web Service by launching the following command on deploy.wsdd generated by
WSDL2java: java -cp %AXISCLASSPATH% org.apache.axis.Client.AdminClient deploy.wsdd

Check the Web Service with the browser, for instance:

http://localhost:8080/axis/services/clientPullSoapEndPoint?method=getDatex2Data?WSDL

5.2.2. Advice for building a Supplier with Microsoft .Net

- Use wsdl.exe with option /serverInterface and XML schema name to create Web Service skeleton,
for instance with the following command:

wsdl /serverInterface Pull.wsdl DATEXIISchema_2_2_0.xsd

- Edit the “impl” file (for instance clientPullServiceImpl.asmx) generated by wsdl.exe. For instance:

using System;

using System.Collections;

using System.ComponentModel;

using System.Data;

using System.Diagnostics;

using System.Web;

using System.Web.Services;

using System.Xml;

using System.IO;

using System.Xml.Serialization;

namespace clientPullServiceProjet

{

 /// <summary>

 /// clientPullService

 /// </summary>

 [WebService(Namespace="http://microsoft.com/webservices/")]

 public class clientPullServiceImpl : clientPullService

 {

 public clientPullServiceImpl()

 {

 //CODEGEN : This call is required by the ASP.NET webservices designer.

 InitializeComponent();

 }

 #region Code generated by Component designer

 //Required by the Web services Designer

Page 17 of 32

 private IContainer components = null;

 /// <summary>

 /// Required method for the Designer hand over – Don't modify

 /// method content with the code editor

 /// </summary>

 private void InitializeComponent()

 {

 }

 /// <summary>

 /// Clean up of ressources.

 /// </summary>

 protected override void Dispose(bool disposing)

 {

 if(disposing && components != null)

 {

 components.Dispose();

 }

 base.Dispose(disposing);

 }

 #endregion

 [System.Web.Services.WebMethodAttribute()]

 [System.Web.Services.Protocols.SoapDocumentMethodAttribute("http://datex2.org/wsdl/clientPul
l/getDatex2Data", Use=System.Web.Services.Description.SoapBindingUse.Literal,
ParameterStyle=System.Web.Services.Protocols.SoapParameterStyle.Bare)]

 [return: System.Xml.Serialization.XmlElementAttribute("d2LogicalModel",
Namespace="D2LogicalModel")]

 public override D2LogicalModel getDatex2Data()

 {

// enter here body method

 }

 }

}

- Check the Web Service with the browser (for instance:
http://localhost/service_path_and_name.asmx?WSDL)

5.2.3. Clients

The Clients of these Supplier systems can be:

 Client systems with simple http GET requests (see previous chapter),

 Client systems using Web Services (refer following paragraph).

5.2.4. Interoperability Web Services Suppliers <-> simple http Clients

If the simple http Client follows recommendations described in the previous chapter, there is nothing
more to develop on the Web Services Supplier side, for interoperability.

Page 18 of 32

5.3. Client system

The Client is built with the DATEX II “Pull WSDL” which is available on the DATEX II Web site.

Two frameworks have already been used for tests, based on Axis and the other on Microsoft .Net.

Other solutions are now available for new systems and are based directly on JAX WS the native
Java API for XML Web Services included in Java JDK 1.6 combined or not with the CXF library
which facilitates the integration with Spring framework and also for development based on
Enterprise Service Bus like ServiceMix.

5.3.1. Advice for building a Client with Apache foundation Axis 1.4.112

Generate the proxy with WSDL2java tool.

Create a Client by using proxy classes. For instance:

package org.datex2.wsdl.ClientPull;

import java.rmi.RemoteException;

import java.util.Calendar;

import java.util.Date;

import javax.xml.rpc.ServiceException;

import org.apache.log4j.Logger;

import D2LogicalModel_pkg.D2LogicalModel;

import D2LogicalModel_pkg.DateTime;

import D2LogicalModel_pkg.Exchange;

public class ClientPull{

 private static Logger logger = Logger.getLogger(ClientPull.class);

 public static void main(String[] args){

 ClientPullInterface ClientPullInterface = null;

 ClientPullService ClientPullService = new ClientPullServiceLocator();

 try {

 ClientPullInterface = ClientPullService.getClientPullSoapEndPoint();

 }

 catch(ServiceException serviceexception){

 System.out.println("Error Service Exception " + serviceexception.getMessage());

 }

 try {

 D2LogicalModel logicalModel = null;

 System.out.println("CLIENTPULLINTERFACE " + ClientPullInterface.toString());

 logicalModel = ClientPullInterface.getDatex2Data();

 System.out.println("LOGICALMODEL " + logicalModel.toString());

 Exchange exchange = logicalModel.getExchange();

 if (exchange != null) {

 System.out.println("EXCHANGE SUPPLID " + exchange.getSupplierIdentification());

 Calendar calendar = exchange.getDeliveryTime().get_value();

 System.out.println("DELIVERY TIME " + new Date(calendar.getTimeInMillis()));

 }

 }

2 This example is maintained is this document because already deployed solutions don’t move to Axis2

and in case of maintenance or extension of such systems, it could be useful for the developers to

know the reason of the header of the classes.

Page 19 of 32

 catch(RemoteException rmiError){

 rmiError.printStackTrace();

 }

 }

}

5.3.2. Advice for building a Client with Microsoft .Net :

With Visual Studio, for instance, there are two ways to build the client:

 First way : connection to the deployed Supplier Web Service through http:

o On Visual Studio Working Project, add a “Web reference” and link it to the Web
Service URL: proxy is automatically created,

o Client class creation with Visual Studio, for instance:

using System;

using System.Drawing;

using System.Collections;

using System.ComponentModel;

using System.Windows.Forms;

using System.Data;

using System.IO;

using System.Xml.Serialization;

namespace clientPullServiceConsumer

{

 /// <summary>

 /// Summary description of Form1.

 /// </summary>

 public class clientPullServiceConsumer : System.Windows.Forms.Form

 {

 private System.Windows.Forms.Button button1;

 private System.Windows.Forms.ListBox listBox1;

 /// <summary>

 /// Variable required by designer.

 /// </summary>

 private System.ComponentModel.Container components = null;

 public clientPullServiceConsumer()

 {

 //

 // Required for the Windows Forms Designer hand over

 //

 InitializeComponent();

 //

 // TODO : add builder code after having called InitializeComponent

 //

Page 20 of 32

 }

 /// <summary>

 /// Clean up of ressources.

 /// </summary>

 protected override void Dispose(bool disposing)

 {

 if(disposing)

 {

 if (components != null)

 {

 components.Dispose();

 }

 }

 base.Dispose(disposing);

 }

 #region Code générated by Windows Form Designer

 /// <summary>

 /// Required method for the Windows Forms Designer hand over – Don't mofify the method
 /// content with the code editor

 /// </summary>

 private void InitializeComponent()

 {

 this.button1 = new System.Windows.Forms.Button();

 this.listBox1 = new System.Windows.Forms.ListBox();

 this.SuspendLayout();

 //

 // button1

 //

 this.button1.Location = new System.Drawing.Point(16, 8);

 this.button1.Name = "button1";

 this.button1.TabIndex = 0;

 this.button1.Text = "appel WS";

 this.button1.Click += new System.EventHandler(this.button1_Click);

 //

 // listBox1

 //

 this.listBox1.Location = new System.Drawing.Point(16, 40);

 this.listBox1.Name = "listBox1";

 this.listBox1.Size = new System.Drawing.Size(256, 134);

 this.listBox1.TabIndex = 2;

 //

 // clientPullServiceConsumer

 //

 this.AutoScaleBaseSize = new System.Drawing.Size(5, 13);

Page 21 of 32

 this.ClientSize = new System.Drawing.Size(280, 182);

 this.Controls.Add(this.listBox1);

 this.Controls.Add(this.button1);

 this.Name = "clientPullServiceConsumer";

 this.Text = "Form1";

 this.ResumeLayout(false);

 }

 #endregion

 /// <summary>

 /// Main application entry point.

 /// </summary>

 [STAThread]

 static void Main()

 {

 Application.Run(new clientPullServiceConsumer());

 }

 private void button1_Click(object sender, System.EventArgs e)

 {

 localhost.clientPullServiceImpl myWS = new localhost.clientPullServiceImpl();

 //object recover

 localhost.D2LogicalModel d2LogicalModel = myWS.getDatex2Data();

 //object data display

 if (d2LogicalModel != null)

 {

 listBox1.Items.Add(d2LogicalModel.ToString());

 localhost.Exchange exc = d2LogicalModel.exchange;

 if (exc != null)

 {

 listBox1.Items.Add("EXCHANGE NOT NULL");

 listBox1.Items.Add(exc.supplierIdentification);

 }

 }

 else

 {

 listBox1.Items.Add("OBJET D2LOGICALMODEL NULL");

 }

 // serialization of recovered object

 XmlSerializer myXmlSerializer = new
XmlSerializer(typeof(localhost.D2LogicalModel));

Page 22 of 32

 StreamWriter myWriter = new StreamWriter("c:/TEMP/D2LogicalModel Obstruction
with SpeedLimit.xml");

 myXmlSerializer.Serialize(myWriter,d2LogicalModel);

 }

 }

}

 Second way: proxy generation thanks to wsdl.exe:

- Use wsdl.exe with option XML schema name to create the proxy, for instance with
the following command:

 wsdl Pull.wsdl DATEXIISchema_2_2_0.xsd

- Add generated classes to the Working Project

- Create the client class (refer to previous example)

5.3.3. Advice for building a Client with Java and ServiceMix

After generating the proxy with the technical solution better known by the development team.

In the following example, the classes offer the capability to access a configuration file in order to
manage the proxy link more dynamically:

package i2.application.tipi.smx.su.ws.consumer;

import i2.application.tipi.smx.components.ws.consumer.WsConsumerEndpoint;

import i2.application.tipi.smx.components.ws.consumer.interceptor.ArchiverInInterceptor;

import i2.application.tipi.smx.components.ws.consumer.interceptor.ContextInInterceptor;

import i2.application.tipi.smx.components.ws.consumer.interceptor.WSPolicy;

import i2.application.tipi.smx.shared.configuration.GlobalConfiguration;

import java.util.ArrayList;

import java.util.List;

import javax.xml.namespace.QName;

import org.apache.servicemix.soap.api.Policy;

import org.apache.servicemix.soap.core.AbstractInterceptor;

import org.springframework.beans.factory.annotation.Value;

import org.springframework.context.annotation.Bean;

import org.springframework.context.annotation.Configuration;

import org.springframework.context.annotation.Import;

import org.springframework.core.io.Resource;

@Configuration

@Import(GlobalConfiguration.class)

public class WsConsumerConfiguration {

 @Value("#{globalProperties['ws.datex2.objectName']}")

 private String objectName;

 @Value("#{globalProperties['ws.datex2.locationUri']}")

 private String locationURI;

Page 23 of 32

 @Value("#{globalProperties['ws.datex2.publicLocationUri']}")

 private String publicLocationURI;

 @Value("classpath:Push_v2_0.wsdl")

 private Resource wsdl;

 /*

 <http:wsconsumer-endpoint service="supplierPush:supplierPushService"
targetService="smx:router"

 endpoint="supplierPushSoapEndPoint"

 locationURI="${ws.datex2.locationUri}"

 objectName="${ws.datex2.objectName}"

 targetServiceError="smx:error-in"

 publicLocationURI="${ws.datex2.publicLocationUri}"

 wsdl="classpath:Push_v2_0.wsdl"

 acknowledge="classpath:acknowledge.xml"

 useJbiWrapper="false"

 xsdBaseURI="${ws.datex2.xsdBaseURI}" >

 <property name="policies">

 <list>

 <ref local="wsPolicy"/>

 </list>

 </property>

 </http:wsconsumer-endpoint>

 */

 @Bean

 public WsConsumerEndpoint wsConsumerEndpoint() {

 final WsConsumerEndpoint endpoint = new WsConsumerEndpoint();

 endpoint.setEndpoint("supplierPushSoapEndPoint"); //$NON-NLS-1$

 endpoint.setService(new QName("http://datex2.eu/wsdl/supplierPush/2_0",
"supplierPushService")); //$NON-NLS-1$ //$NON-NLS-2$

 endpoint.setTargetService(new QName("smx", "router")); //$NON-NLS-1$ //$NON-NLS-2$

 endpoint.setTargetServiceError(new QName("smx", "error-in")); //$NON-NLS-1$ //$NON-NLS-
2$

 endpoint.setObjectName(this.objectName);

 endpoint.setUseJbiWrapper(false);

 endpoint.setWsdl(this.wsdl);

 endpoint.setLocationURI(this.locationURI);

 endpoint.setPublicLocationURI(this.publicLocationURI);

 //endpoint.setXsdBaseURI(this.xsdBaseURI);

 endpoint.setPolicies(new Policy[]{wsPolicy()});

Page 24 of 32

 return endpoint;

 }

….

}

The classes which describe the endpoint of the Push client have to contain some import. By instance:

package i2.application.tipi.smx.components.ws;

import i2.application.tipi.datex2.v2_0.modele.D2LogicalModel;3

import i2.application.tipi.datex2.v2_0.modele.SupplierPushInterface;

import i2.application.tipi.datex2.v2_0.modele.SupplierPushService;

import i2.application.tipi.smx.shared.Constants;

import i2.application.tipi.smx.shared.components.AbstractEndPoint;

import java.net.MalformedURLException;

import java.net.URL;

import java.util.ArrayList;

import java.util.List;

import java.util.Map;

import javax.jbi.management.DeploymentException;

import javax.jbi.messaging.MessageExchange;

import javax.jbi.messaging.MessagingException;

import javax.jbi.messaging.NormalizedMessage;

import javax.xml.ws.BindingProvider;

import javax.xml.ws.Holder;

import org.apache.commons.logging.Log;

import org.apache.commons.logging.LogFactory;

import org.springframework.util.StringUtils;

Example of a class which indicates the use of the D2LogicalModel to the ESB ServiceMix in a project
named TIPI.

package i2.application.tipi.datex2.v2_0.modele;

import javax.xml.bind.annotation.XmlAccessType;

import javax.xml.bind.annotation.XmlAccessorType;

import javax.xml.bind.annotation.XmlAttribute;

import javax.xml.bind.annotation.XmlElement;

import javax.xml.bind.annotation.XmlRootElement;

import javax.xml.bind.annotation.XmlSchemaType;

import javax.xml.bind.annotation.XmlType;

/**

** Java class for D2LogicalModel complex type. * *

* The following schema fragment specifies the expected content contained within * this class. * *

3 These imports are referring to one’s own project. In this example they are referring for the first three

ones to TIPI and the use of the Datex II model and the nest two ones refer to SeviceMix components.

Page 25 of 32

 * <complexType name="D2LogicalModel">

 * <complexContent>

 * <restriction base="{http://www.w3.org/2001/XMLSchema}anyType">

 * <sequence>

 * <element name="exchange" type="{http://datex2.eu/schema/2/2_0}Exchange"/>

 * <element name="payloadPublication
 type="{http://datex2.eu/schema/2/2_0}PayloadPublication" minOccurs="0"/>

 * <element name="d2LogicalModelExtension"
 type="{http://datex2.eu/schema/2/2_0}ExtensionType" minOccurs="0"/>

 * </sequence>

 * <attribute name="modelBaseVersion" use="required"
 type="{http://www.w3.org/2001/XMLSchema}anySimpleType" fixed="2.0" />

 * </restriction>

 * </complexContent>

 * </complexType>

 ** **/

@XmlRootElement

@XmlAccessorType(XmlAccessType.FIELD)

@XmlType(name = "D2LogicalModel", propOrder = { "exchange",

 "payloadPublication", "d2LogicalModelExtension" })

public class D2LogicalModel {

 @XmlElement(required = true)

 protected Exchange exchange;

 protected PayloadPublication payloadPublication;

 protected ExtensionType d2LogicalModelExtension;

 @XmlAttribute(required = true)

 @XmlSchemaType(name = "anySimpleType")

 protected String modelBaseVersion;

 /**

 * Gets the value of the exchange property.

 *

 * @return possible object is {@link Exchange }

 *

 */

 public Exchange getExchange() {

 return exchange;

 }

 /**

 * Sets the value of the exchange property.

 *

 * @param value

 * allowed object is {@link Exchange }

 *

 */

Page 26 of 32

 public void setExchange(Exchange value) {

 this.exchange = value;

 }

 /**

 * Gets the value of the payloadPublication property.

 *

 * @return possible object is {@link PayloadPublication }

 *

 */

 public PayloadPublication getPayloadPublication() {

 return payloadPublication;

 }

 /**

 * Sets the value of the payloadPublication property.

 *

 * @param value

 * allowed object is {@link PayloadPublication }

 *

 */

 public void setPayloadPublication(PayloadPublication value) {

 this.payloadPublication = value;

 }

 /**

 * Gets the value of the d2LogicalModelExtension property.

 *

 * @return possible object is {@link ExtensionType }

 *

 */

 public ExtensionType getD2LogicalModelExtension() {

 return d2LogicalModelExtension;

 }

 /**

 * Sets the value of the d2LogicalModelExtension property.

 *

 * @param value

 * allowed object is {@link ExtensionType }

 *

 */

 public void setD2LogicalModelExtension(ExtensionType value) {

 this.d2LogicalModelExtension = value;

 }

Page 27 of 32

 /**

 * Gets the value of the modelBaseVersion property.

 *

 * @return possible object is {@link String }

 *

 */

 public String getModelBaseVersion() {

 if (modelBaseVersion == null) {

 return "1.0";

 }

 return modelBaseVersion;

 }

 /**

 * Sets the value of the modelBaseVersion property.

 *

 * @param value

 * allowed object is {@link String }

 *

 */

 public void setModelBaseVersion(String value) {

 this.modelBaseVersion = value;

 }

}

5.3.4. Suppliers

The Suppliers of these Clients systems can be:

 Supplier systems using only http (see previous chapter),

 Supplier systems using Web Services (refer previous paragraphs of this chapter).

5.3.5. Interoperability Web Services Clients <-> simple http Suppliers

If the simple http Supplier follows recommendations described in the previous chapter, there is
nothing more to develop on the Web Services Client side, for interoperability.

Page 28 of 32

Supplier Push with Web Services

Page 29 of 32

6.1. Content

This chapter describes the fundamental details of a service employing “Supplier Push with Web
Services”. There is no subscription in this case.

6.2. Supplier system

The Publisher subsystem elaborates data conforming to the DATEX II XML schema.

The delivery subsystem is built with the DATEX II “Push WSDL” which is available on the DATEX II
Web site.

The way to build the DATEX II Supplier of a Supplier Push system is the same as the DATEX II
Client of a Client Pull system (refer previous chapter), because here the Supplier reaches the Web
Service which is on the Client side and uses one operation of this Client Web Service to push data.

Warnings :

 Operating mode “Publisher Push on occurrence” :

o in this mode, for situation publications (events, operator actions, …), situation and
situation records lifecycles have to be managed (update, cancel, end). This is
described in the document [Exchange PSM].

Operating modes “Publisher Push on occurrence and Publisher Push periodic” :

o after a link failure between the Supplier and its Client(s), recovery mechanisms
have to be built (refer to [Exchange PSM].

6.3. Client system

The Client is built with the DATEX II “Push WSDL” which is available on the DATEX II Web site.

The way to build the DATEX II Client of a Supplier Push system is the same as the DATEX II
Supplier of a Client Pull system (refer to the previous chapter), because here the Web Service is on
the Client side and offers one operation to the DATEX II Supplier to push data.

6. Supplier Push with Web Services

Page 30 of 32

General Issues

Page 31 of 32

This chapter is a compilation of explanations about frequent asked questions or problems risen over
recent years when using the previous version of DATEX II and that may facilitate new
implementations.

7.1. Automatic Data base model generation

Several tools made possible the generation of the structure of the database (Table, link, etc…) by
extracting the information either from the UML model or from the XML Schema (XSD).

Tools of this kind do not work with the Datex II UML model or with the Datex2 XSD, due to the
abstract classes implemented in the model.

This matter is not a big problem because the number of classes used inside Datex II will provide a
large number of tables and, with a good design, this number of tables can be reduced, thus easing
comprehension of the database by developers and speeding up execution of the system.

7.2. A secure way to produce valid XML Files

The use of webservices can help to implement application.

7.3. Validity of the produced XML Files

An XML file is valid when it can be validate with the corresponding XSD schema.

A lot of tools (free or licensed) are available therefore.

7.4. How to distinguish Snapshot and on occurrence exchanges

The classes "Exchange" and "Subscription" must be implemented to access the attribute
“updateMethod” which can have three values:

 "snapshot" is used for snapshots, which means for a photo containing all situations and
situationRecords without any link with their previous status

 “singleElementUpdate" is used when only the updated SituationRecord is transmitted on
occurrence

 "allElementUpdate" is used when all the SituationRecords of a situation are transmitted on
occurrence, even if only one situation record is updated. To be transmitted, the situation must
at least have one updated situationRecord.

It is very important for the system which receives the information contained in the XML file, to know
the category of update method used.

If the updateMethode is allElementUpdate, that means that all previous SituationRecords received
from the same supplier must be deleted and replaced by the new one. If a SituationRecord is no
longer in the new XML File, that means that the event was ended during the time between the two
publications and after the mapping, and all these events must be deleted from the database.

For singleElementUpdate, and also allElementUpdate, the supplier must implement the
management class to transmit to the client the end of an event, or that one event is cancelled and
so no longer alive.

7.5. Management Class

This class is an aggregation from SituationRecord class.

It must be implemented in order to manage the life cycle on a situationRecord. This information is
needed for high-level links, between road operators for example.

The status “cancel” or “end” renders the situationRecord no longer active, which means that any
other future version will not be transmitted.

The use of this class is mandatory for "singleElementUpdate" and "allElementUpdate" in order to
inform the client that the situationRecord will no longer be active.

7.6. versiondIdentifiable

All classes which are version-identifiable contain in the header of the XML Marker an Id and a
version number.

7. General issues

Page 32 of 32

The Id will be unique and the couple (Id, VersionNumber) will also be unique.

The version number is a non-negative integer. The version number is upgraded each time a change
appears. A number of systems increment this number from 1 and the first version is very often 1.

