
DATEX II v2.3

MODELLING METHODOLOGY

Document version: 2.3

30 September 2014

European Commission

Directorate-General for Mobility and Transport

Copyright © 2014

Page 1 of 52

Page 2 of 52

Prepared by :

 Date Comment Version

ES5 WI6 15 / 06 / 2009 1.0

ES5 WI6 03 / 08 / 2009 Fixed some reported errors. 1.1

ES5 WI6 14 / 01 / 2010 Inclusion of relevant comments from CEN feedback
in preparation for release of RC2.

1.2

ES5 WI6 23 / 02 / 2010 Alignment with draft of CEN TS 1.3

ESG5 WI6 31 / 05 / 2011 Final alignment with CEN/TS 16157-1, including
CEN voting comments, where possible.

2.0

ESG5 WI6 10 / 05 / 2012 Minor release incorporating the request for
addressing the concept of ‘profiles’

2.1

ESG5 WI6 31 / 05 / 2013 2.2

EIP A4.1 30 / 09 / 2014 Minor fix regarding untyped references;
clarification on policy regarding use of units

2.3

Reviewed by :

 Date Comment Version

DATEX Technical
Group

15 / 01 / 2010 1.2

DATEX Technical
Group

15 / 06 / 2011 2.0

DATEX Technical
Group

24 / 05 /2012 2.1

DATEX Technical
Group

31 / 05 / 2013 2.2

DATEX Technical
Group

30 / 09 / 2014 2.3

Approved by :

 Date Comment Version

DATEX Technical
Group

15 / 01 / 2010 Authorization for publication 1.2

DATEX Strategic
Group

30 / 06 / 2010 Authorization for publication 2.0

DATEX Strategic
Group

31 / 05 / 2012 Authorization for publication 2.1

DATEX Strategic
Group

31 / 05 / 2013 Authorization for publication 2.2

DATEX Strategic
Group

30 / 09 / 2014 Authorization for publication 2.3

Page 3 of 52

TABLE OF CONTENTS

1. Introduction ... 5
1.1. Objectives .. 5
1.2. Document structure.. 5
1.3. DATEX II reference documents ... 5

2. Modelling Principles ... 7
2.1. Introduction .. 7
2.2. Separation of payload content and exchange .. 7
2.3. Modelling approach: abstract specification and platform mappings ... 8
2.4. Abstract content modelling: the DATEX II data model ... 9
2.5. Profiles: the DATEX II tailoring tool .. 10
2.6. Content serialisation for transfer: the mapping to XML / XML schema 10
2.7. DATEX II naming definition imposed by XML Schema .. 12
2.8. DATEX II naming convention ... 12
2.9. Abstract exchange modelling: the principles of data exchange ... 14
2.10. Implementing DATEX II exchange on the Internet protocol stack .. 14

3. The DATEX II metamodel ... 16
3.1. Introduction .. 16
3.2. Meta-Metamodel – how to describe a metamodel? ... 16
3.3. The DATEX II metamodel .. 17
3.4. General conventions and requirements ... 20

4. XML Schema Definition mapping .. 24
4.1. Mapping of "D2Datatype" ... 24
4.2. Mapping of "D2Enumeration" and "D2Literal" .. 24
4.3. Mapping of "D2Component" .. 25
4.4. Mapping of "D2Identifiable" classes ... 27
4.5. XML elements .. 27
4.6. Extension mapping .. 28
4.7. Overall document structure and namespaces .. 28

5. Platform independent model rules .. 30
5.1. General .. 30
5.2. Requirements .. 30

6. Platform specific model rules for XML with XML schema definition ... 34
6.1. General .. 34
6.2. Requirements .. 34

7. Predefined model elements ... 37
7.1. General .. 37
7.2. Top Level model packages and classes .. 37
7.3. Basic datatypes ... 39
7.4. Note on the use of units in DATEX II ... 39

8. Extension Rules .. 41
8.1. General .. 41
8.2. Requirements .. 41

9. Annex A: Short introduction to relevant UML constructs... 44

10. Annex B: Mandatory structure elements .. 48
10.1. Package "D2LogicalModel" .. 48
10.2. Package "PayloadPublication" ... 49
10.3. Package "General"... 50
10.4. Package "DataTypes" .. 50
10.5. Package "Generic" ... 51

Page 4 of 52

Introduction

Page 5 of 52

1.1. Objectives

This document is targeted towards all stakeholders that want to understand the modelling
methodology applied throughout the DATEX II specifications. While this is potentially a wide range
of readers, the document addresses specifically those users that intend to extend the DATEX II
data model and therefore need to understand – and comply with – the modelling principles, the use
of the Unified Modeling Language (UML) and other conventions for DATEX II modelling.

1.2. Document structure

This document is structured as follows:

 Section 1 Introduction – gives an overview on the objectives of this document, its structure

and how it fits into the whole set of DATEX II reference documents.

 Section 2 Modelling Principles – provides an overview of the basic concepts of DATEX II.

 Section 3 The DATEX II metamodel – specifies the metamodel used for DATEX II data

modelling.

 Section 4 XML Schema Definition mapping – shows how the model is mapped to a transfer
syntax for exchange using XML schema definitions (XSD)

 Section 5 Platform independent model rules – describes rules and requirements for abstract

data modelling in DATEX II.

 Section 6 Platform specific model rules for XML with XML schema definition – describes
rules and requirements required for the described mapping to XML schema definitions.

 Section 7 Predefined model elements – describes the top level structure of the model.

 Section 8 Extension Rules – describes rules for extending the model.

 Annex A: Short introduction to relevant UML constructs – gives a brief overview of relevant
UML constructs.

 Annex B: Mandatory structure elements – gives a dictionary of the data elements in the top
level data structure.

1.3. DATEX II reference documents

Reference in this document DATEX II document Document
version

Date

[Modelling methodology] DATEX II Modelling methodology 2.3 30-09-2014

[Data model] DATEX II Data model 2.3 30-09-2014

[Schema generationtool] DATEX II schema generation tool 2.3 30-09-2014

[Exchange PSM] DATEX II Exchange PSM 2.3 30-09-2014

[WSDL] DATEX II Push/Pull 2.3 30-09-2014

[XML schema] DATEX II v2.3 schema 2.3 30-09-2014

 Supporting documentation

[User guide] DATEX II User guide 2.3 30-09-2014

[Software developers guide] DATEX II dev guide 2.3 30-09-2014

[XML schematoolguide] DATEX II Schema generation tool
guide

2.3 30-09-2014

[Extension guide] DATEX II Extension guideline 2.3 30-09-2014

[Profile guide] DATEX II Profile guideline 2.3 30-09-2014

[Exchange PIM] DATEX II Exchange PIM 1.01 08-02-2005

1. Introduction

Page 6 of 52

Modelling Principles

Page 7 of 52

2.1. Introduction

In the late nineties – shortly before the DATEX specifications that had been elaborated by the
DATEX Task Force about five years earlier eventually became the endorsed CEN prestandards
CEN ENV 13106:2000 and 13777:2000 – implementers already knew about deficiencies in the
DATEX specifications that made DATEX difficult and expensive to use. This usually resulted in poor
performance and unreliable data exchange. The first pilot implementations had exposed these
problems and systems from different vendors usually were not interoperable. At this time R&D
activities like the 5th framework program project TRIDENT and the TEN-T funded project COURIER
had already started looking into potential improvements, which all circulated around two basic main
suggestions:

 To clearly separate the content data model (i.e. the traffic engineering application domain

model – the What?) from the data exchange related specifications that stipulated how this
information should be exchanged between software systems (the information and
communication technology solution domain model – i.e. the How?)

 To adopt the distinction between an abstract platform independent model (PIM) and its

concrete implementation(s) in (a) specific target platform(s) as a platform specific model(s)
(PSM), which is a basic principle of the Model Driven Architecture (MDA) approach (see the
website of the Object Management Group for details on MDA).

Both recommendations follow the principle of separation of concerns in order to make DATEX II
more robust and more manageable, and also intend to separate the more persistent, abstract,
application domain oriented specifications from the short innovation cycles of ICT platforms. More
details on the four possible combinations of content / exchange related platform
independent / dependent modelling are provided in the following sections.

2.2. Separation of payload content and exchange

TRIDENT and COURIER – the two R&D projects that first aimed at improving DATEX – had both
concluded that the DATEX-Net specifications in particular – but also the DATEX dictionary in a few
places – were mixing up aspects of modelling the content domain of travel and traffic related
information with data constructs required by the exchange mechanisms that aimed at exchanging
this information.

In the best case, the consequence of this was that the DATEX specifications became cumbersome
for users, since the information they looked for from one domain was often veiled by many other
regulations with relevance only for the other domain. Implementers of the data exchange
mechanisms found it difficult to find the few data exchange related attributes amongst the many
(200+) attributes from the traffic engineering domain. Traffic engineers and application designers
sometimes stumbled over seemingly redundant attributes that looked at the same thing from the
different viewpoints of the domains (i.e. there is a potentially substantial time gap between the start
in time of a traffic situation on the road and the point in time that a database record was created to
capture the information about this traffic situation). In the worst case, this led to non-interoperable
systems.

These considerations went along with the general observation that a more specific modelling of the
data model underlying DATEX data exchange was needed. The considerations about appropriate
modelling technologies actually led to the obvious conclusions that more or less independent UML
models should be provided for the traffic engineering content of DATEX messages, and the
exchange mechanisms used to effectively and efficiently exchange this content between systems.

Since the use of UML was finally agreed as the tool to specify the payload content (and also the
exchange mechanisms, although on a different level of detail), it was again a more or less obvious
decision to implement both models in one UML model database, with those UML packages related
to the exchange model being aware of – and actually using elements from – the payload content
model, but not the other way round, i.e. the content payload modelling is entirely unaware of the
exchange model.

2. Modelling Principles

http://www.omg.org/mda

Page 8 of 52

Figure 1 - Exchange Dependency on Payload

Readers trying to confirm this relationship between the Exchange and Payload packages when
looking at the final DATEX II v2.0 UML model will make the observation that on the top level, there
are two more. Non-empty packages not mentioned yet: General and Management.

The General package reflects the fact that data concepts in DATEX II can be reused throughout the
model. This does hold particularly throughout the various parts of the content model, where
common data concepts like data types or data structures can be defined at one place and then be
(re-)used throughout the model. Nevertheless, it is also possible to reuse these concepts in other
packages, like for instance the Exchange package. Therefore, concepts like reusable classes, data
types, enumerations and location references have been collected separately from the payload
content in the General package on the top level.

During the work on the first draft of DATEX II – which was carried out by an expert consortium
contracted by DG-TREN in a project called D2 – it became apparent that there was a need for
some particular metadata constructs that appeared to be half-way between the Payload content
and the Exchange specifications. These data concepts were mainly addressing the management of

data in the client’s database, based on triggers from the supplier, covering concepts well known
already from DATEX like indicators for ending a situation, cancellations or for conveying the status
of records related to client specific filters inside the supplier. Clearly, these concepts were not
addressing traffic information as such, but rather describing the means to properly handle the
information. On the other hand, they were not directly related to the exchanged artefacts of
serialised content payload, i.e. they were artefacts of a higher level of abstraction than those found
in the Exchange package. The final conclusion was to create a third package at the top level of the
model that covers all metadata related to the Management of exchanged information.

2.3. Modelling approach: abstract specification and platform mappings

Following the recommendations from R&D (TRIDENT, COURIER), but also based on the TRIDENT
assessment carried out by the DATEX Technical Committee (TC) and the input from the Centrico
OTAP demonstrator, the DATEX TC recommended that DATEX II should have a rich, structured
data model formally specified in UML. The DATEX Data Dictionary, which so far had contained the
data concept definitions of DATEX, could then be generated automatically from the data model, e.g.
via a report generator built into the tool used to maintain the model or via a software package
working on the UML model exported in the interoperable XMI (XML Metadata Interchange) format.
Furthermore, the data model could then be used for creating mappings of the model to specific
implementation platforms via Platform Specific Models (PSM), using the Model Driven Architecture
approach. This procedure has the advantage that all the required steps can be implemented as
software tools and are carried out automatically, allowing for quick and cheap adaptation of the
PSM whilst ensuring consistency. The experiences with DATEX had shown that manual mappings
of sizable models are unmanageable and usually inevitably lead to inconsistencies.

When starting to create a DATEX II data model in UML, it quickly became apparent that UML offers
a vast variety of mechanisms that would not all be required for the DATEX II modelling exercise. On
the other hand UML was a fairly generic tool, and applying it for DATEX II modelling required some
additional clarifications, conventions and agreements on semantics that are not to be found in
general purpose UML documentation. These need to be understood by users that want to fully
understand and make full use of the features offered by DATEX II, e.g. when introducing national,
regional or application specific extensions to the DATEX II standardised model in an interoperable
way.

This included a UML profile for DATEX II, where a huge amount of metadata required to maintain
and use DATEX II is captured in UML stereotypes and tagged values (i.e. data concepts on the
meta-model layer of DATEX II). Further to this, conventions on naming, structuring/packaging and
interpreting UML concepts are also required. The D2 project had created an initial input into this in
a document called “UML Methodology and Modelling Constraints”. The document at hand builds on
this D2 input and extends it with further information, especially with meta-modelling constructs,
conventions and agreements that were achieved when further developing the DATEX II data model
and the DATEX II tools.

Page 9 of 52

2.4. Abstract content modelling: the DATEX II data model

Some of the problems with DATEX were due to problems in processing the EDIFACT messages,
and were thus expected to disappear ‘automatically’ at the time the EDIFACT messages were
replaced with up to date transfer syntax (e.g. XML in conjunction with XSD that allow for online
validation of messages against a pre-defined schema). But there were also quite a few
interoperability problems in the past that actually occurred on a higher abstraction layer, i.e. clients
made false assumption after successful EDIFACT processing. These problems were not due to the
syntactical structure of DATEX, they were rather caused by the fact that the so called DATEX
“conceptual data models” actually only contained a very lax modelling of the application domain,
and real world, commercial strength system implementations required a lot of additional context to
properly “understand” each other. It is not surprising that virtually anywhere where DATEX had
been used operationally, additional specifications like the DATEX rule sets issued in France or Italy,
or the Centrico DATEX implementation profiles were created.

During the conceptual work on DATEX II it was agreed that this situation should be improved by
providing a clearly specified, rich content model, which should aim to be as strict and unambiguous
as possible for a European standard. UML seemed to offer all the tools required to define such a
model. The problem was that at the same time there was another, effectively contradicting
requirement: flexibility. As soon as the basic interoperability problems with DATEX had been
overcome in a given context – e.g. by creating a specific user profile – the need for adding things
not covered properly in the DATEX Data Dictionary arose. There was no mechanism in DATEX that
could support this, so many users created their own, non-interoperable “extensions”. DATEX II was
supposed to do better than that, so extensibility had to be incorporated into the approach from day
one.

2.4.1. The three layer approach

The basic idea to deal with these conflicting requirements in DATEX II is a concept of three layers
of interoperability:

 Layer A is for users that only want to use the full, rich data model that has been agreed and

harmonised amongst all European stakeholders. The model is expressed as a class model in
UML (see the next section for details on how UML is applied). It was designed to be as strict
and as unambiguous as possible in the difficult context of European harmonisation. It is fully
specified to an extent that implementation artefacts can be created automatically from it, and it
replaces the former DATEX Data Dictionary as the master resource for content modelling of
traffic and travel related information. Applications that have no content requirements beyond
what this substantial model already has to offer do not need to consider interoperability
problems.

 Layer B provides a mechanism to extend level A in an interoperable way, i.e. users that are in
principle happy with level A but think there are only a few details missing in the model can
amend the model by adding the missing bits for local applications. DATEX II provides the rules
to apply when amending the model, and the tools to create updated PSMs and implementation
artefacts. DATEX II ensures that extensions following the rules and using the DATEX tools will
be interoperable in the sense that any level B extended supplier/client will still be backward
compatible with all level A standard supplier/client systems, and will also be interoperable – on
level A – with all other level B extended systems.

 Layer C comes in where the level B rules are too constrained to allow a proper model being
created for new, innovative content. In such a situation, a level B extended model may not be
suitable but the user might still want to use the DATEX methodology and tools. Therefore, a
third level C has been incorporated where users can still use and benefit from the DATEX
framework, but the resulting model can only be used by systems that are aware of this
extension, and it is not interoperable with standard level A equipment.

The main innovation in this concept is the notion of interoperable extensions, i.e. level B. Level C is
actually the situation that had already existed in DATEX. Of course a DATEX user could have
created its own EDIFACT message, following the EDIFACT syntax rules and created a new
branching diagram (i.e. message definition) – which is the principle idea of level C. But level B goes
beyond this in that DATEX II requires implementation platforms to implement level B extensions in
a way that the same interface can be used by extended as well as standard level A, non-extended
systems. The principle is illustrated in the following figure for an XML scenario, where the middle
(blue) system is a standard, level A system (e.g. COTS software). The systems left and right extend
the sample data (vehicle) with their own specific extensions (for colour and type). All clients can
plug in and process (and validate) all messages from all feeds. Just that the content of the
extension part is only available to clients aware of this specific extension, illustrated by the various
levels of detail depicted on the three systems’ “screens”.

Page 10 of 52

Figure 2 - Level B Interoperability

2.5. Profiles: the DATEX II tailoring tool

The mechanisms described so far have been used to create a vast domain model for road traffic
and transport related information in the level A model. Most content providers will be more than
happy to use only a limited subset of the optional elements provided by this model, and they even
can add missing elements using the level B extension mechanism. Unfortunately, the selected
subset of features actually used by a content feed is not self-evident or self-explanatory for the
clients that intend to receive this information. Clients tuned to process just the relevant part of the
data model actually used by a content provider may be much lighter and easier / cheaper to
produce than clients that can process the whole abundance of DATEX II data model elements. And
the extra cost of such ‘heavy clients’ would all be in vain since a large part of the functionality is
systematically not used by the content feed!

The answer to this observation is the profiling mechanism of DATEX II. Prior to generating concrete
transfer syntax specifications – currently this means prior to creating the XML schema definition
used for exchanging data – the content provider can deselect all those optional elements of the
level A model that the service does not support. The content provider can therefore create a
schema that is fully tailored to his particular service – by deselecting unused level A data elements
and by adding missing data elements as a level B extension – and does not have any overhead
compared to a bespoke schema. On the other hand, the DATEX II methodology ensures that all
instances that validate against this service specific schema also validate against the full standard
schema, thus ensuring full system level interoperability.

IMPORTANT NOTE

Clients that are based on a selection of content elements based on a profile are only interoperable
with data feeds that are based on exactly the same selection! The selection constraints the
knowledge of the client about level A elements and the occurrence of deselected elements in a
payload instance will cause validation/processing by such a client to fail!

2.6. Content serialisation for transfer: the mapping to XML / XML schema

When the work on DATEX II was taken up, it became very quickly clear that for the near future
there would be only one dominant target platform for content serialisation, the eXtensible Markup
Language (XML). XML as such is only a markup language that governs the principle syntax

structure of messages, but does not provide means to define and validate data structures in the
syntax. This functionality is added by using the XML Schema Definition (XSD) standard on top of
XML. Both standards are maintained by the World Wide Web consortium (www.w3.org) and can be
obtained online (see www.w3.org/XML/Core or www.w3.org/XML/Schema respectively). It was
therefore clear from the start that a PSM to XML/XML schema should be created together with the
abstract modelling of the content data model.

http://www.w3.org/
http://www.w3.org/XML/Core
http://www.w3.org/XML/Schema

Page 11 of 52

As will be discussed in detail in the section about the DATEX II metamodel, metadata for the
DATEX II PIM is captured in UML stereotypes and tagged values. The details about these tagged
values are to be found there. The same mechanism is used for metadata required for platform
specific models, i.e. in the content domain currently for the mapping of the DATEX II PIM to an XML
Schema Definition.

The following types of information are captured in the PSM related tagged values:

 Data types – the PIM models data types as classes which usually are empty and all

information about the characteristics of the intended type is essentially captured in the
definition tagged value in free text. These classes are found in the DataTypes sub-package of
the General package. Implementers of a PSM need to decide how to best implement the
intended basic data type in their target platform and capture this decision in the PSM. For the
XSD mapping, this is done via the schemaType / schemaTypeInclude tagged values, which
can contain any XSD type specification. In addition, the facets tagged values may be used for

simple types, e.g. to define string size limitation for database implementation. All classes
denoting data types are marked up with the stereotype <<datatype>>.

 Enumerations – although also data types by nature, enumerations are treated differently.
They are found in the PayloadEnumerations sub-package of the General package. First of all,

enumerations are a data concept of UML itself, and it would be more than awkward to ignore
this definition and invent something separately for DATEX II. Thus, enumerations in DATEX II
are marked up with the <<enumeration>> stereotype. These classes contain UML attributes

that denote the permissible literals for the respective data type, which are defined by the name
of the UML attribute. Hence, no PSM specific tagged values are needed on enumeration
classes or their literals.

 Data structures – besides the basic types (data types and enumerations), DATEX II allows for
clustering semantically related data concepts in data structures represented as UML classes.
These classes can define their own attributes, or they can (recursively) reuse other classes.
For any serialisation of these data structures in a sequential target platform – which is required
for XSD – it is essential to determine the correct order of attributes and contained
substructures. This order is defined via the order tagged value, in the following way:

o First, the items inherited from the supertype hierarchy are copied in the same

order they appear in the direct predecessor class – if applicable.
(Note: DATEX II does not allow multiple inheritance.)

o Second, the attributes of the class itself are serialised in the order of increasing
order values

o At last, the items contained in related classes (i.e. composed or aggregated) are
copied into the serialised state, in the order of increasing values of the order

tagged values of the associations ends connected to the class at hand.

The following gives an example for the order of serialised object state.

Figure 3 - Example for State Serialisation

In the depicted scenario, the order of appearance of the attributes in the serialised state of Class D
would be:

attrA1, attrA2, attrB1, attrC1, attrD1, attrD2, attrE1, attrF1

On top of the regulations stipulated in this UML profile for the XML Schema mapping, there are
some basic conventions and also some constraints on the use of UML which are imposed by the

Page 12 of 52

XSD mapping that are globally defined. All regulations and conventions are specified in detail in the
subsequent sections as requirements, but are briefly summarised here for convenience of the
reader.

2.7. DATEX II naming definition imposed by XML Schema

2.7.1.
To successfully convert from a UML model to XML Schema, the constricted naming definition of
XML Schema has to be used. To avoid possible conflicts with different platform dependent
implementations it is recommended to restrict the list of permitted characters.

A valid DATEX II name must begin with a letter, followed by none or more letters or digits. A name
is case sensitive.

UMLName ::= (Letter) , { [Letter | Digit] };

For a language independent understanding of names the definition of “Letter” is as follows:

Letter ::= “A” | “B” | “C” | “D” | “E” | “F” | “G” | “H” | “I” | “J” | “K” | “L” | “M” | “N” |
“O” | “P” | “Q” | “R” | “S” | “T” | “U” | “V” | “W” | “X” | “Y” | “Z” | “a” | “b” | “c” | “d” |
“e” | “f” | “g” | “h” | “i” | “j” | “k” | “l” | “m” | “n” | “o” | “p” | “q” | “r” | “s” | “t” | “u” | “v” |
“w” | “x” | “y” | “z”;

Similarly, “Digit” is defined as:

Digit ::= “0” | “1” | “2” | “3” | “4” | “5” | “6” | “7” | “8” | “9”;

This applies to all names which are used while modelling UML to ensure the compatibility to XML
Schema and other platform dependent solutions.

Note that the resulting XML schema may contain names that do not comply with this definition
because they contain an additional character (“_”). These names have been created internally
during the schema generation process. Such generated names contain this special character to
ensure they are not conflicting with user defined names following the naming convention described
above.

2.8. DATEX II naming convention

2.8.1.
“Universal” PIM to PSM mappings impose the use of a formal language to define naming
conventions.

In order to enforce a consistent capitalisation and naming convention across all parts of the UML
model, “Upper Camel Case” (UCC) and “Lower Camel Case” (LCC) capitalisation styles shall be
used. UCC style capitalises the first character of each word. LCC style capitalises the first character
of each word except for the first word.

Note: This style guide is not applicable for notes, names of fragments in sequence diagrams or
conditions in activity diagrams.

Packages, classes, objects, boundaries, actors, data types and names of
diagrams shall use the UCC convention.

Attributes, compositions, aggregations, roles, stereotypes, tagged values,
states in a timing diagram, use cases and messages shall use the LCC
convention.

Acronyms should be avoided, but in cases where they are used, capitalisation
shall be transformed to comply with the UCC/LCC conventions.

2.8.2. Special constraints on naming convention imposed by XML

To enable a fully automated conversion process the following constraints on naming UML elements
shall be used.

Page 13 of 52

Package and class names shall be unique for the whole model.

Names of attributes and roles - be they explicitly given in the model or implicitly
derived from the corresponding class name by turning it into LCC in cases
where no role name is given - shall be unique within the scope of the class that
holds the attributes and relations.

For every class, a complex type will be created within the XSD. The names of the elements have to
be unique within the whole namespace. Otherwise a validation of the XML Schema will not be
successful.
Note that while this formal criteria regarding attribute names requires uniqueness for attribute
names only within the scope of the surrounding class, the scope of data concepts behind an
attribute name is actually global in DATEX II, i.e. if two classes contain an attribute of the same
name, it has to reflect the same data concepts. For details refer to section 3.4.2.5.

2.8.3. Constraints of multiplicity

Because 0..* --> 0..* relationships cannot canonically be mapped from a PIM to XSD, they are
prohibited within the D2LogicalModel and any Content model within the DATEX II Community

(Note: 0..1 -> 0..1, 0..1 -> 0..n and 0.n -> 0..1 relationships are a subset of 0..n -> 0..n ones, and
therefore are prohibited as well).

Multiplicities not explicitly stated are treated as “1..1”.

Note that the Content models must be seen and designed from a Publication point of view, and that
aspect most of the time solves the modelling problem.

Let’s take the following example in Figure 4 about modelling the location of traffic elements.

From a pure modelling viewpoint, A GroupOfLocations can apply to 0 to many TrafficElements, and
a TrafficElement may have 0 to 1 GroupOfLocations.

Figure 4 - ‘Pure’ Location Modelling

From a Publication viewpoint, we can consider that when a TrafficElement is exchanged
(throughout a SituationPublication for example), it may have 0 to 1 GroupOfLocations.
This Publication approach leads to the following modelling that must be adopted within the
DATEX II Community.

cd TrafficElement

«abstract»

TrafficElement

+ trafficElementSeverity: SeverityEnum [0..1]

LocationContainer::

GroupOfLocations

0..1

0..*

Page 14 of 52

Figure 5 - Modelling Locations for a Publication

2.9. Abstract exchange modelling: the principles of data exchange

UML as such is not restricted to data modelling; indeed the claim of UML is to be a tool that can be
used to model all (or at least most) important aspects of a system. This includes system behaviour,
and the tools used for this in general can of course be used to also model the behaviour of
communication peers in a data exchange system like DATEX II.

The obvious consequence was to use UML also as a basis for specifying the abstract data
exchange Platform Independent Model. Nevertheless, this could not be taken to the same level of
formal specifications as for the data model, where the software artefacts for the implementation of
the model can automatically be generated from UML. In the exchange PIM, UML concepts and
diagrams are used rather to visualise the specification, which in itself is contained in a textual
specification document (that includes these diagrams) which had been created during the D2
project and still forms a part of DATEX II v2.0.

The UML modelling used for exchange has fully adopted the UML rules and constraints defined for
the content model, except for one extension: in the information management package, classes are
depicted with methods as well as attributes, and the methods defined therein for the two classes
Situation and LifeCyclemManagement are placeholders that symbolise management actions
carried out on the system representations of the corresponding DATEX II entities.

2.10. Implementing DATEX II exchange on the Internet protocol stack

The DATEX II exchange PIM is currently mapped to the Internet family of communication protocols
(on top of the IP network layer protocol). Two incarnations of this mapping exist, a restricted
mapping of the client-pull exchange pattern of the PIM to plain use of HTTP, and a more extensive
mapping of all exchange modes of the PIM to the Web service protocol family (WSDL and SOAP).

Both are textual specifications and not implemented as PSMs in the UML model. They can both be
found in a specific document in the DATEX II specification set [Exchange PSM].

cd TrafficElement

«abstract»

TrafficElement

+ trafficElementSeverity: SeverityEnum [0..1]

LocationContainer::

GroupOfLocations

0..1

1

Page 15 of 52

The DATEX II metamodel

Page 16 of 52

3.1. Introduction

Defining a formal, well defined data model first of all requires a formal, well defined language to be
used for the definition itself. An attempt to provide any degree of formal rigor within a specification
using an informal, ambiguous language is likely to fail. In the special case of data modelling, this
well known base principle of software engineering has led to a best practice where often the
specification language is used "recursively". UML for example is itself defined in UML. The
challenge of course is to avoid infinite recursion.

In the case of UML, the OMG has taken a deliberate decision to use four layers for specification.
The bottom layer – called M0 (the letter M denotes the metalayer) – is data itself. Information about
this data and its structure – i.e. the actual data model – is on layer one M1. The language to specify
such a data model is the UML, which forms layer M2. The vast majority of users will never see
anything further than that. Those few that have to deal with modelling principles – e.g. those
intending to develop tools working with models – will have to understand the formal structure of
UML itself, as it is specified in UML ISO/IEC 19501:2005. This description uses a small UML subset
that forms a meta-metamodel used to define UML (and other OMG M2 standards) on layer M3.
When work on the DATEX II data model started, the engineers also had to decide on which
'language' (i.e. which metamodel) to use. As a consequence of lessons learned from the weaker,
mainly text based model used for DATEX in the past, the decision was taken that the DATEX II
data model should be created using UML and a UML tool. After a tool had been selected, modellers
started immediately to transform the DATEX model into UML, based on a body of experience
gained through projects like TRIDENT in the late nineties and OTAP in 2002/2003. It seemed as if
the decision on the layer M2 choice had been taken.

What became apparent during the months of modelling work that followed was that the "use UML"
principle as such actually did not answer all questions. Engineers started to develop and agree on
conventions to be respected when working on the model. This included first of all the choice, which
UML constructs to use. The discussion about this choice of UML constructs also fostered a better
common understanding of what these constructs mean and what they should be used for, i.e. the
concrete semantics of the constructs for DATEX II.

It also became quickly apparent that the standard UML constructs and features would capture
many but not all aspects of the DATEX II data model. Fortunately, UML has built-in extension
mechanisms that enabled the DATEX II team to extend the model with additional metadata by
creating a UML profile with additional stereotypes and tagged values.

When trying to reflect on this process in order to start work on this document, it became apparent
that the DATEX II work had probably created its own metamodel by defining these conventions,
rules and this UML profile, which then had just been expressed using UML. Obviously this M2 layer
model had to be fully understood and expressed to be able to derive the provisions for this part of
the specifications. But how should this be done? The DATEX II team itself had never exposed this
foundation of their work explicitly. Thus it was decided that the best way to go forward was to define
an explicit DATEX II metamodel. Of course this would need to be expressed in UML as well, but
using the same layout for exposing a M2 or higher level metamodel could be confusing to all users
except for those very few familiar with metamodelling. Therefore the final decision was taken to
depict this explicit M2 layer in a UML based graphical notation that would have a different look &
feel than the UML tool output used to depict the data model on level M1, which would provide for a
clear, visual separation of both levels.

The use of this formal M2 metamodel promised to be manifold. Firstly, this formal structure would
provide a sound basis for developing software that could be used to verify compliance of models
with the provisions of the DATEX II specification and to map the platform independent model to
concrete transfer syntax implementations, in particular to an XML Schema Definition. Secondly, the
process of creating this software in itself was useful to validate the consistency and the
completeness of the requirements as a feedback. The basic assumption is that most provisions for
the UML model would eventually come as a requirement out of this process.

3.2. Meta-Metamodel – how to describe a metamodel?

The main question then was to decide how to express the M2 metamodel, i.e. which M3 model to
use. The quoted preference for a distinct visual appearance suggested a graphical approach that
would have a clear mapping to UML.

3. The DATEX II metamodel

Page 17 of 52

Figure 6 – DATEX II meta-metamodel

This figure depicts the underlying M3 model as well as its mapping to UML constructs from the UML
"Core" package. Essentially, this meta-metamodel consists of metaclasses that may or may not be
abstract, and that may be a specialisation of other metaclasses. Metaclasses may be in a directed
association to other metaclasses – depicted by an arrow – which may have a multiplicity and a role
name on the arrow head end. Metaclasses may have metaattributes that may have a multiplicity
and that shall have a type.

3.3. The DATEX II metamodel

Using this M3 level metamodel, the DATEX II metamodel for the platform independent model on
level M2 can be depicted as in the following diagram.

The DATEX II metamodel provides mainly two types of metaclasses: a component class
("D2Component") and an identifiable class ("D2Identifiable"), where the identifiable class is a direct
specialisation of the component class. The identifiable class is used to denote entities in DATEX II,
i.e. objects that have their own identity and lifecycle, like for example one congestion, one
measurement site, etc. Components are simple data structures that are only used to aggregate
related pieces of information. In that sense components do not form entities or domain objects, they
are simply a mechanism that can be used to structure the content model of identifiable objects and
encapsulate aspects that can potentially be reused in other parts of the model. Both concepts are
mapped to UML Classes.

Note that the two classes have the same value space on the level of the metamodel, the difference
becomes visible on the data model level, where "D2Identifiable" is mapped to classes with either an
<<identifiable>> or a <<versionedIdentifiable>> Stereotype, which again controls the generation of
implementations, e.g. adds an "id" attribute in XML Schema and – for versioned classes – also a
“version” attribute. The “versioned” variant is used where object retain their id during their lifecycle
but have – potentially multiple – updates of their object states over time, so called “versions”.

Page 18 of 52

Figure 7 - DATEX II metamodel

The relations themselves ("D2Relation") have additional metadata assigned to them. It is
mandatory to provide a range for multiplicity ("lower", "upper") and an "order". Note that this does
not mean that the UML specification must have explicit multiplicity. In cases where no UML
multiplicity is explicitly specified, a default value of "1" is used. The "order" relates to multiple
associations connected to the same 'whole' metaclass. In this case, the "order" attribute values
(distinct non-negative integers) govern the sequence order in which the different 'part' data
structures appear in the serialised 'whole' object state. Relations may furthermore have three
optional attributes: a "definition", a "role" name and an "index". Note that in some cases these
attributes become mandatory, especially in cases where default values (if neither "role" nor
"qualifier" is provided, a default value derived from the target class name by turning the first letter to
lower case is assumed) would be ambiguous.

Both, the "D2Component" and the "D2Identifiable" metaclass may also have attributes – modelled
as a metaclass called "D2Attribute" – which themselves have to have a set of metaattributes. These
consist of a name and a definition, a multiplicity stated as lower and upper bound and an order.
Except for the name metaattribute these metaattributes have the same semantics as in the
"D2Relation" metaclass, just that all are mandatory. This implies especially that for attributes, a
definition has to be provided in all cases. As in the case of "D2Relation", the (mandatory)
multiplicity of attributes is either determined from the (optional) UML multiplicity, or it is set to 1..1 by
default.

Types in the DATEX II metamodel are represented by two metaclasses: "D2Enumeration" and
"D2Datatype". Data types in DATEX II have only a definition and a name in the metamodel, i.e. the
DATEX II metamodel does not actually model the value space of the data type. The rationale
behind this design is that platform mappings to concrete implementation platforms should be free to
use the most appropriate representation of the type in the particular target platform, and not be
constrained by structural regulations from the platform independent model. In the case of
enumerations, the intended mapping to string literals seems to be sufficiently stable and valid
across all platforms that the metamodelling of this very important data type can be explicit, based
on defining the metaclass "D2Literal" with attributes "name", "definition" and "order" which have the
same semantics as in the other metaclasses of the metamodel.

The described metaclasses and their metaattributes and relations are mapped to UML in the
following way:

Page 19 of 52

The DATEX II metaclasses "D2Component", "D2Identifiable" and "D2Datatype" are mapped to the
UML metaclass "Class" in the "Foundation:Core" package. Their "name" metaattribute is mapped to
the "name" metaattribute of "Class". Their "definition" is mapped to an instance of the UML
"TaggedValue" metaclass from the "Foundation:Extension Mechanisms" package with
"TaggedValue.name" being fixed to "definition" and "TaggedValue.dataValue" containing the
definition of the corresponding metaclass, as contained in their "definition" metaattribute.

The "isAbstract" metaattribute of "D2Component" and "D2Idenifiable" is mapped to the
metaattribute of the same name in UML Class.

The distinction between "D2Component" and "D2idenitfiable" is mapped to an instance of the UML
"Stereotype" metaclass from the "Foundation:Extension Mechanism" package with "name" equal to
either "identifiable" or “versionedIdentifiable”. Note that "D2Component" classes are mapped to
UML classes without any of the stereotypes known to and governed by this specification.

The "D2Relation" metaclass is mapped to UML "Association" in "Foundation:Core". The following
table summarises the mapping of the metaattributes of this metaclass:

Table 1 Mapping of “D2Relation” attributes

Attribute Mapping

definition "Foundation:Extension Mechanism:TaggedValue.dataValue"
(with "Foundation:Extension Mechanism:TaggedValue.name" set to
"definition")

lower "Foundation:Core:AssocitationEnd.multiplicity.range.lower"

upper "Foundation:Core:AssocitationEnd.multiplicity.range.upper"

role "Foundation:Core:AssociationEnd.name"

index "Foundation:Core:AssociationEnd.qualifier.name"

order "Foundation:Extension Mechanism:TaggedValue.dataValue"
(with "Foundation:Extension Mechanism:TaggedValue.name" set to
"order")

The "D2Attribute" metaclass is mapped to UML "Attribute" in "Foundation:Core". The following table
summarises the mapping of the metaattributes of this metaclass:

Table 2 Mapping of “D2Attribute” attributes

Attribute Mapping

name "Foundation:Core:Attribute.name"

definition "Foundation:Extension Mechanism:TaggedValue.dataValue"
(with "Foundation:Extension Mechanism:TaggedValue.name" set to
"definition")

lower "Foundation:Core:Attribute.multiplicity.range.lower"

upper "Foundation:Core:Attribute.multiplicity.range.upper"

order "Foundation:Extension Mechanism:TaggedValue.dataValue"
(with "Foundation:Extension Mechanism:TaggedValue.name" set to
"order")

The "D2Enumeration" metaclass is mapped to UML "Enumeration" in "Foundation:Core". Its "name"
metaattribute is mapped to the "name" metaattribute of "Enumeration". Its "definition" is mapped to
an instance of the UML "TaggedValue" metaclass from the "Foundation:Extension Mechanism"
package with "TaggedValue.name" being fixed to "definition" and "TaggedValue.dataValue"
containing the definition of the corresponding metaclass, as contained in their "definition"
metaattribute.

The "D2Literal" metaclass is mapped to UML "EnumerationLiteral" in "Foundation:Core". Its "name"
metaattribute is mapped to the "name" metaattribute of "EnumerationLiteral". Its "definition" is
mapped to an instance of the UML "TaggedValue" metaclass from the "Foundation:Extension
Mechanism" package with "TaggedValue.name" being fixed to "definition" and
"TaggedValue.dataValue" containing the definition of the corresponding metaclass, as contained in
their "definition" metaattribute. Its "order" is mapped to another instance of the UML "TaggedValue"
metaclass from the "Foundation:Extension Mechanism" package with "TaggedValue.name" being
fixed to "order" and "TaggedValue.dataValue" containing the order value of the corresponding
metaclass, as contained in their "order" metaattribute.

The following table lists the mappings of the various metaclass relationships in the DATEXI II
metamodel. Note that only the metamodel associations are listed here. Generalizations on the
metamodel level are seen as having semantics on the layer of the meta-metamodel, and thus are
not mapped to UML constructs on this layer.

Page 20 of 52

Table 3 Mapping of relationships

Relation Mapping

"D2Component"-
"D2Component"

"Foundation:Core:Generalization"

"D2Datatype"-
"D2Datatype"

"Foundation:Core:Generalization"

"D2Enumeration"-
"D2Literal"

"Foundation:Core:Enumeration.literal"

"D2Component"-
"D2Attribute"

"Foundation:Core:Class.feature"

"D2Relation"-
"D2Component"

"Foundation:Core:AssociationEnd.participant"

"D2Component"-
"D2Relation"

"Foundation:Core:Class.association"

"D2Attribute"-"D2Type" "Foundation:Core:Attribute.type"

3.4. General conventions and requirements

3.4.1. Metamodelling

The DATEX II modelling methodology uses the Unified Modeling Language (UML), version 1.4.2 as
specified in UML ISO/IEC 19501:2005. UML provides a vast set of modelling elements that are not
all used for DATEX II data modelling. Further to the selection of UML modelling elements, this
section also provides requirements for DATEX II modelling regarding the use of these elements.

Models that claim to comply with this specification may use these UML elements but must comply
with all provisions regarding the use of these elements. “Annex A: Short introduction to relevant
UML constructs” provides a brief introduction into the UML constructs used for DATEX II, although
the authors recognise that there is plenty – presumably better – introductory material available to
learn about UML in general and would like to refer the reader to these resources for further study.

Note that no provisions are made regarding the existence and use of other UML elements. Thus,
compliant models may use these other elements, but they have no defined semantics in the
framework of DATEX II.

DATEX II compliant models may use the following metaclasses and metaattributes from the UML
"Core" package:

 Class

o Class.name

o Class.isAbstract

o Class.feature

o Class.association

 Association

o Association.connection

 AssociationEnd

o AssociationEnd.name

o AssociationEnd.aggregation

o AssociationEnd.multiplicity

o AssociationEnd.qualifier

o AssociationEnd.participant

 Attribute

o Attribute.name

o Attribute.multiplicity

o Attribute.type

 Enumeration

o Enumeration.name

 EnumerationLiteral

Page 21 of 52

o EnumerationLiteral.name

 Generalization

DATEX II compliant models may use the following metaclasses and metaattributes from the UML
"Extension Mechanisms” package:

 Tagged Value

o TaggedValue.name

o TaggedValue.dataValue

 Stereotype

o Stereotype.name

DATEX II compliant models may use the following metaclasses and metaattributes from the UML
"Data Types" package:

 Multiplicity

o Multiplicity.Range

o MultiplicityRange.lower

o MultiplicityRange.upper
DATEX II compliant models may use the following metaclasses and metaattributes from the UML
"Model Management" package:

 Package

o Package.name

Whenever one of these UML constructs is used in a UML model seeking compliance with the
DATEX II specification, all provisions contained in this specification governing the use of this
particular construct shall be adhered to.

3.4.2. Naming conventions

All names used in DATEX II UML models must comply with the following rule set.

3.4.2.1
The following UML constructs used in this document may have a name that is used by the
DATEX II metamodel: AssociationEnd, Attribute, Class, Enumeration, EnumerationLiteral, Package,
Stereotype, TaggedValue. This name is specified via a “name” metaattribute from that the

metaclasses inherit from the abstract Core:ModelElement metaclass.

If such a name metaattribute is provided, it shall begin with a letter, followed by none or more letters
or digits. A name is case sensitive.

In formal terms, a DATEX II name shall comply with the following definition using Extended Backus
Naur Form as of ISO/IEC 14977:1996.

name ::= letter , { letter | digit }

letter ::= “A” | “B” | “C” | “D” | “E” | “F” | “G” | “H” | “I” | “J” | “K” | “L”

| “M” | “N” | “O” | “P” | “Q” | “R” | “S” | “T” | “U” | “V” | “W” | “X” | “Y” |

“Z” | “a” | “b” | “c” | “d” | “e” | “f” | “g” | “h” | “i” | “j” | “k” | “l” | “m”

| “n” | “o” | “p” | “q” | “r” | “s” | “t” | “u” | “v” | “w” | “x” | “y” | “z”

digit ::= “0” | “1” | “2” | “3” | “4” | “5” | “6” | “7” | “8” | “9”

3.4.2.2
The following DATEX II names shall be in Upper Camel Case notation, i.e. they shall start with an
upper case letter (‘A’ to ‘Z’), they shall consist of one or more logical components, and each
component itself shall again begin with an upper case letter (Example:
Component1Component2Component3):

Class, Enumeration, Package

Page 22 of 52

3.4.2.3
The following DATEX II names shall be in Lower Camel Case notation, i.e. they shall start with a

lower case letter (‘a’ to ‘z’), they shall consist of one or more logical components, and each
component starting with the second component shall begin with an upper case letter (Example:
component1Component2Component3):

Attribute, AssociationEnd, EnumerationLiteral, Stereotype, TaggedValue

3.4.2.4
In all DATEX II names acronyms should be avoided, but in cases where they are used, their
capitalization shall be modified to comply with the provisions in secvtions 3.4.2.2 and 3.4.2.3.

Note: In some parts of this document, default names are defined by turning names of other
constructs from Upper Camel Case to Lower Camel Case. This transformation is strictly defined as
turning only the first character from upper case to lower case. Example: a proper class name may
be "ANameExample". If referred by another class via an aggregation without role name and
qualifier, the XML schema encoding of the enclosing class will contain an attribute that will implicitly
be named "aNameExample".

3.4.2.5
The names of the following DATEX II UML constructs shall be unique within their own object
category in the whole model:

Attribute, Class, Enumeration, Package

Since the scope of attributes is limited to the containing class, this uniqueness requirement is not
ensured by the use of UML or a UML tool. Thus, the DATEX II specifications provide their own
definition of semantic identity for this particular case:

In the case of Attributes this means that if two distinct UML Attributes have the same name, the
"dataValue" of their corresponding "definition" TaggedValue shall be identical and their "type"
metaattribute shall also have the same value.

Page 23 of 52

XML Schema Definition mapping

Page 24 of 52

The previous section provided background information on how the DATEX II data model has been
created based on an explicit presentation of the underlying metamodel. The constructs of this
metamodel – amended by additional metadata for a platform specific model – govern the mapping
of models to XML Schema Definitions (XSD). This section describes how the normative schemas
used in the DATEX II specifications are actually created from a UML model conform to this
specification.

The XSD mapping is basically covered by a small set of general rules, which are then amended /
extended by further detailed mechanisms that handle specific cases. These principle rules – using
the metamodel presented in section 3.3 – are described in this section.

4.1. Mapping of "D2Datatype"

“D2Datatype” classes are in principle mapped to XSD type definitions of the same name as the
class. Exceptions – i.e. cases where a “D2Datatype” class is mapped to something else – do exist
and are described below. The value of the class' "definition" metaattribute is mapped to an XML
Schema “annotation” element, i.e. the principle structure looks like this:

<xs:simpleType name="ClassNameFromUMLModel">

 <xs:annotation>

 <xs:documentation>

 ContentOfDefinitionTaggedValueFromUMLModel

 </xs:documentation>

 </xs:annotation>

 <xs:restriction base="RestrictionBase" />

</xs:simpleType>

The value of “RestrictionBase” is determined according to the following algorithm:

1. If the UML Class has got a “schemaType” (ref. 6.2.1) tagged value, this value must be an XML
Schema pre-defined simple type from the list provided in (ref. 6.2.3). The value of
“RestrictionBase” is this XML Schema pre-defined type name.

2. If the UML Class has neither got a “schemaType” nor a “schemaTypeInclude” tagged value,
the value of “RestrictionBase” is the name of the class' superclass. Note that 6.2.4 ensures
that any such a class does have a superclass.

The XML Schema type definitions generated by this rule may be modified by providing a “facets”
tagged value. In this case, the “xs:restriction” element will be expanded and the content of the
'facets' tagged value will be inserted between the opening and the closing element:

<xs:restriction base="RestrictionBase" >

 ContentOfFacetsTaggedValueHere

</xs:restriction>

Note that according to 6.2.6, the content of this tagged value shall be a valid content model for the
“xs:restriction” element.

This principle mapping rule for “D2Datatype” classes may be overridden by providing a user
supplied XML Schema type mapping via a sub-schema provided via the “schemaTypeInclude”
tagged value – which is helpful in cases where intended type definitions do not fit into the scheme
described above. The content of the user supplied type definition is not captured in the tagged
value itself but at a different place that is uniquely denoted by a URI contained in the tagged values.
This may be either by treating the tagged value as a URL – trying to load the content from there –
or by another means that allows providing external XML Schema type definitions (e.g. as file from
local disk).

4.2. Mapping of "D2Enumeration" and "D2Literal"

“D2Enumeration” classes – and their corresponding “D2Literal” classes – are always mapped to an
XML Schema simple type definition with the following structure:

<xs:simpleType name="EnumerationNameFromUMLModel">

 <xs:annotation>

 <xs:documentation>

 ContentOfDefinitionTaggedValueFromUMLModel

 </xs:documentation>

 </xs:annotation>

 <xs:restriction base="xs:string">

4. XML Schema Definition mapping

Page 25 of 52

 <xs:enumeration value="EnumerationLiteralNameFromUMLModel">

 <xs:annotation>

 <xs:documentation>

 ContentOfDefinitionTaggedValueFromUMLModel

 </xs:documentation>

 </xs:annotation>

 </xs:enumeration>

 ...

 </xs:restriction>

</xs:simpleType>

4.3. Mapping of "D2Component"

There are two different ways of mapping “D2Component” classes to an XML Schema complex type
definition.

4.3.1. "D2Component" classes without superclass

First, those “D2Component” classes that do not have a superclass are mapped in principle to the
following structure:

<xs:complexType name="ClassNameFromUMLModel">

 <xs:annotation>

 <xs:documentation>

 ContentOfDefinitionTaggedValueFromUMLModel

 </xs:documentation>

 </xs:annotation>

 <xs:sequence>

 <xs:element name="NameFromUMLModel" type="TypeFromUMLModel"

 minOccurs="LowerBound" maxOccurs="UpperBound">

 <xs:annotation>

 <xs:documentation>

 ContentOfDefinitionTaggedValueFromUMLModel

 </xs:documentation>

 </xs:annotation>

 </xs:element>

 …

 </xs:sequence>

</xs:complexType>

The name of the generated XML Schema type is taken from the “name” metaattribute of the UML
Class, the content of the “xs:documentation” element is taken from the (mandatory – see section

5.2.1) “definition” tagged value. The “xs:element” entries in the sequence are generated from:

1. The UML Attributes specified in the UML Class and appearing in the order of their “order”
tagged values.

2. The UML Associations that are connected to the UML Class, again appearing in the order of

the “order” tagged values of the association ends connected to the “D2Component” class.

3. A single extension element at the very end.

Instances of the "D2Attribute" (UML Attributes) and "D2Relation" (UML Associations) classes are
mapped to the following structure:

<xs:element name="NameFromUMLModel" type="D2LogicalModel:TypeFromUMLModel"

 minOccurs="LowerBound" maxOccurs="UpperBound">

 <xs:annotation>

 <xs:documentation>

 ContentOfDefinitionTaggedValueFromUMLModel

 </xs:documentation>

 </xs:annotation>

</xs:element>

If lower or upper bounds are not provided, a default of “1” is assumed. Note that “xs:annotation”
elements may be omitted in cases where they are not required by rules and not provided by the
model (e.g. in case of a single association between two “D2Component” classes).

The “NameFromModel” is created for “D2Attributes” according to the following hierarchy:

1. The value of the “schemaName” tagged value, if present.

2. The value of the “name” metaattribute of the “D2Attribute” class.

Page 26 of 52

The “NameFromModel” is created for “D2Relations” according to the following hierarchy:

1. The name of the remote UML AssociationEnd connected to the class, if present.

2. The “name” of the UML Class connected on the other side of a UML Association, with its UML
Class name turned to lower case (by turning the first character or any prefixing acronym to
lower case).

“TypeFromUMLModel” is the “name” of either the associated “D2Enumeration” or the associated
“D2DataType” for “D2Attributes”. For “D2Relations” it is by default the “name” of the associated
class, with a single deviation from this rule in case the UML AssociationEnd metaclass directly
connected to the UML Class has a “qualifier” UML Attribute. Note that in this particular case

“LowerBound” is hardcoded to “0” and “UpperBound” is hardcoded to “unbounded”!

In this case, the type name is created as “_<name>” where <name> is determined according to the
following hierarchy:

1. The “name” of the remote UML AssociationEnd connected to the class – turned to UCC – if
present.

2. A concatenation of the “name” of the UML Class plus the “name” of the “qualifier” UML
Attribute plus the “name” of the UML Class connected on the other side of the UML
Association.

A definition for this type is then also added to the schema as:

<xs:complexType name="_<name>">

 <xs:sequence>

 <xs:element name="<name1>" type="<name2>" minOccurs="1" maxOccurs="1" />

 </xs:sequence>

 <xs:attribute name="<nameFromUMLQualifier>" type="xs:int" use="required" />

</xs:complexType>

where <name2> is the the “name” of the UML Class connected on the other side of the UML
Association, whereas <name1> is the same name turned to LCC.

The structure of the final extension element is:

<xs:element name="ClassNameToLCC+'Extension'" type="D2LogicalModel:_ExtensionType"

 minOccurs="0" />

Again, the name of this element is generated by taking the class' name and turning it to lower camel
case (by turning the first character to lower case), and then appending the fixed string “Extension”.

 “D2Attribute” instances may alternatively be mapped to an XML Attribute by setting an “attribute”
tagged value to “true”. In this case, the structure is extended by adding “xs:attribute” elements to
the content model.

<xs:complexType name="ClassNameFromUMLModel">

 <xs:annotation>

 ...

 </xs:annotation>

 <xs:sequence>

 ...

 </xs:sequence>

 <xs:attribute name=”AttributeNameFromUMLModel” type=”TypeFromUMLModel”

 use=”required”/>

 ...

</xs:complexType>

The 'use=”required”' is set if multiplicity is 1..1 and omitted in case of 0..1. Note that other
multiplicities are not allowed and that the attribute's mapped type must be an XML Schema simple

type according to 6.2.8.

4.3.2. "D2Component" classes with superclass

Those “D2Component” classes with a superclass are mapped in a similar way, just that they are
mapped to extensions of their superclass.

<xs:complexType name="ClassNameFromUMLModel">

 <xs:annotation>

 <xs:documentation>

 ContentOfDefinitionTaggedValueFromUMLModel

 </xs:documentation>

 </xs:annotation>

 <xs:complexContent>

 <xs:extension base="D2LogicalModel:NameOfSuperclassFromUMLModel">

Page 27 of 52

 <xs:sequence>

 ...

 </xs:sequence>

 </xs:extension>

 </xs:complexContent>

</xs:complexType>

4.4. Mapping of "D2Identifiable" classes

“D2Identifiable” classes are mapped in the same way as “D2Component” classes, just that they
have the following additional attribute definition.

 <xs:attribute name="id" type="xs:string" use="required" />

In case of “versioned” being “true”, a second attribute is created for the version number.

 <xs:attribute name="version" type="xs:string" use="required" />

Besides the type itself, an Identity-constraint definition will be created that ensures uniqueness of
instances of the type, depeneding on “id” or “id”+”version”, respectively. This constraint definition
has the following structure (example for the versioned case including a “version” attribute)

 <xs:unique name="_"{targetClass}"Constraint">

 <xs:selector xpath=".//"{targetClass} />

 <xs:field xpath="@id" />

 <xs:field xpath="@version" />

 </xs:unique>

Furthermore, corresponding (typed!) referencing types are created, that allow to refer to elements
of these types, based on common untyped reference types (“Reference” & “VersionedReference”).

 <xs:complexType name="Reference">

 <xs:attribute name="id" type="xs:string" use="required"/>

 </xs:complexType>

and

 <xs:complexType name="VersionedReference">

 <xs:attribute name="id" type="xs:string" use="required"/>

 <xs:attribute name="version" type="xs:string" use="required"/>

 </xs:complexType>

Depending on whether the target type for a class {targetClass} is versioned or not, the
corresponding reference type looks like this

 <xs:complexType name=”_”{targetClass}"Reference">

 <xs:complexContent>

 <xs:extension base="D2LogicalModel:Reference">

 <xs:attribute name="targetClass" use="required" fixed={targetClass}/>

 </xs:extension>

 </xs:complexContent>

 </xs:complexType>

or like this

 <xs:complexType name=”_”{targetClass}"VersionedReference">

 <xs:complexContent>

 <xs:extension base="D2LogicalModel:VersionedReference">

 <xs:attribute name="targetClass" use="required" fixed={targetClass}/>

 </xs:extension>

 </xs:complexContent>

 </xs:complexType>

The {targetClass} is determined by setting a “targetClass” tagged value on the attribute that
implements the reference! If no “targetClass” is provided, the corresponding generic reference type
(“Reference” or “VersionedReference”) is used.

4.5. XML elements

For all “D2Component” or “D2Identifiable” classes that have a “rootElement” tagged value, a top
level XML element declaration is generated that has the following structure:

 <xs:element name="d2LogicalModel" type="D2LogicalModel:D2LogicalModel" />

The example shows the “d2LogicalModel” element which is mandatory according to section 7.2.2,
but other top level elements may be declared in the same way, i.e. the “rootElement” content is
used for the “name” attribute and the class name itself is used for the “type” attribute.
For classes that have a “modelBaseVersion” tagged value (required for “D2LogicalModel”
according to 7.2.7) an attribute of the same name is created with the following structure:

 <xs:attribute name="modelBaseVersion" use="required" fixed="xxx" />

Page 28 of 52

Where the content of the “fixed” XML attribute (“xxx”) is determined from the tagged value.

4.6. Extension mapping

There is a special deviation from the mapping presented so far for mapping a level B extended
model to XML Schema. The only difference in the mapping is for specialisations that cross the
extension border, i.e. specialisations where the superclass is in the core model and the subclass is
in the extension. The Extension Rules require that this situation is determined by a superclass /
subclass pair where the subclass has an “extension” tagged value being set to “levelb” and the
superclass has not.

In these cases, the specialisation is not mapped to an extension, but the extension element of the
superclass is replaced by an XML element of the same name that is of an internal complex type
which consists of a sequence of XML elements that represent the – potentially – multiple classes
that extend this superclass in the extensions.

This means that

 <xs:element name="someClassExtension" type="D2LogicalModel:_ExtensionType"

 minOccurs="0" />

is replaced by

 <xs:element name="someClassExtension

 type="D2LogicalModel:_SomeClassExtensionType" minOccurs="0" />

Where "_SomeClassExtensionType" is defined as:

 <xs:complexType name="_SomeClassExtensionType">

 <xs:sequence>

 <xs:element name="classA" type="D2LogicalModel:ClassA" minOccurs=”0” />

 <xs:element name="classB" type="D2LogicalModel:ClassB" minOccurs=”0” />

 ...

 <xs:any namespace="##other" processContents="lax"

 minOccurs="0" maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:complexType>

4.7. Overall document structure and namespaces

The whole set of type and element definitions provided so far in this section is finally wrapped into
the following XML structure:

<?xml version="1.0" encoding="UTF-8" standalone="no"?>

<xs:schema elementFormDefault="qualified" attributeFormDefault="unqualified"

 xmlns:D2LogicalModel="http://datex2.eu/schema/2/2_0"

 targetNamespace="http://datex2.eu/schema/2/2_0"

 xmlns:xs="http://www.w3.org/2001/XMLSchema" version="2.1">

 …

</xs:schema>

The target namespace for this version of DATEX II is http://datex2.eu/schema/2/2_0. The

first version number indicates the version of the modeland is taken from the "modelBaseVersion"
tagged value of the top level element, the seconded is a legacy aretfact and is fixed. It will be
removed in future major versions.

If a model contains extension classes with their "extension" tagged value set to "levelb", the
namespacve is retained, i.e. Level B extension have the same namespace as the Level A model.
If a model contains extension classes with their "extension" tagged value set to "levelc", the
generated schema is not allowed to use the same namespace than Level A. The definition of the
new namespace is not goverened by this specification, e.g. it can be an input field in a schema
generation tool's configuration screen.

Note that model elements reused from Level A in Level C extensions will therefore have a new
namespace and will become different implementation classes after data binding. Modellers that
want to reuse code from Level A implementations in an extended model/schema are therefore
encouraged to consider a Level B extension.

Page 29 of 52

Platform independent model rules

Page 30 of 52

5.1. General

The DATEX II modelling methodology implies a certain structure of a UML model that seeks to
claim compliance with this specification. This section states the requirements that UML models
shall comply with in terms of constraints on the use of certain UML constructs. Note that no
statements are made concerning other UML constructs, i.e. models that contain other UML
constructs may still claim DATEX II compliance, as long as all requirements for the named UML
constructs are met.

Most provisions in this section have been directly deduced from the metamodelling approach taken
for DATEX II, which is explained further in section 3.3. Nevertheless, others have been decided
deliberately to guide users, improve modelling quality and avoid ambiguity.
The provisions in this section address the particular requirements for the platform independent
model, i.e. they do not address requirements for mapping DATEX II models to specific transfer
syntax for exchange of data. Such requirements are dealt with in later sections of this document.

5.2. Requirements

5.2.1.
DATEX II models may use UML Classes. UML Classes shall have a “definition” UML TaggedValue.

5.2.2.
UML Classes may have a “datatype” UML Stereotype assigned.

5.2.3.
UML Classes in DATEX II models may have UML Attributes.

5.2.4.
UML Attributes shall have a “definition” UML TaggedValue.

5.2.5.
UML Attributes shall have an assigned “type” element. The assigned type shall be a UML Class
with UML Stereotype “datatype” (Note that built-in UML types are not allowed.) or it shall be a UML
Enumeration. If the assigned type is either “Reference” or “VersionedReference”, the UML Attribute
may have a “targetClass” UML TaggedValue, which shall provide a name of a UML Class that has
an “identifiable” or “versionedIdentifiable” Stereotype assigned, respectively.

5.2.6.
UML Attributes shall have an “order” UML TaggedValue. This order shall be a non negative integer
and all order values of attributes of the same UML Class shall be unique within this UML Class.

5.2.7.
UML Attributes may have a “multiplicity” element attached. In case multiplicity is not provided
explicitly, a default value of "1..1" is used.

5.2.8.
UML Attributes names have a global name scope in DATEX II, i.e. two UML Attributes with the
same name shall have the same definition and type values.

5. Platform independent model rules

Page 31 of 52

5.2.9.
DATEX II models may contain UML Enumerations. These UML Enumerations may contain UML
EnumerationLiterals.

5.2.10.
UML Enumerations shall have a “definition” UML TaggedValue assigned.

5.2.11.
UML EnumerationLiterals shall have a “definition” UML TaggedValue assigned.

5.2.12.
UML EnumerationLiterals shall have an “order” UML TaggedValue assigned. This order shall be a
non negative integer and all order values of UML EnumerationLiterals of the same UML
Enumeration shall be unique within this UML Enumeration.

5.2.13.
For all UML Classes that do not have a “datatype” UML Stereotype assigned, the following UML
constructs shall be unique:

 UML Attribute “names”

 “names” of remote UML AssociationEnds of UML Associations connected to the class

 “qualifiers” of UML AssociationEnds directly connected to the UML Class

 names of UML Classes connected via the a UML Association without an UML
AssociationEnd name on the connected end – with their UML Class name’s first letter
turned to lower case

5.2.14.
UML Classes may be declared to be “abstract”.

5.2.15.
UML Classes may have an “identifiable” UML Stereotype assigned or they may have a
“versionedIdentifiable” UML Stereotype assigned. They shall not have both stereotypes assigned.

5.2.16.
UML Classes which themselves or any of their ancestor classes (i.e. a direct UML Generalization,
UML Generalization of its UML Generalization, etc.) have an “identifiable” or “versionedIdentifiable”
UML Stereotype assigned shall not have a “datatype” UML Stereotype assigned to themselves or
their ancestor classes.

5.2.17.
UML Classes shall not have two or more UML Generalizations.

5.2.18.
DATEX II models may use UML Associations between UML Classes. UML Associations shall be
binary. UML Associations may have a “multiplicity” element, may have a “definition” UML
TaggedValue and may have a (role) “name” attached to their UML AssociationEnd elements. If
multiplicity is not provided explicitly for a UML AssociationEnd, the default is "1..1". If a role name is
not provided for a UML AssociationEnd, the default assumption is the name of the connected UML
Class with the first character turned to lower case.

5.2.19.
One UML AssociationEnd of any UML Association in DATEX II models may have their

"aggregation" attribute set to either "aggregate" or "composite". If the value of this attribute on both

Page 32 of 52

sides is "none", the association is not governed by this specification and does not have to be
compliant to the requirements provided in this document.
Note that this requirement means that arbitrary associations which are neither aggregations nor
compositions are allowed in a DATEX II model but do not have semantics in the scope of DATEX II.

5.2.20.
UML Associations in DATEX II models may have a qualifier on the AssociationEnd on the side that
has a UML meta attribute aggregation set to either aggregate to composite (i.e. the side with the
diamond).

5.2.21.
UML Associations in DATEX II models shall have an “order” UML TaggedValue assigned to on the
AssociationEnd on the side that has a UML meta attribute aggregation set to either aggregate to
composite (i.e. the side with the diamond). This order value shall be a non-negative Integer and
shall be different from any other value of any other UML Association that shares the same UML
Class for this ‘target’ side UML AssociationEnd (i.e. all ‘target’ association ends ending in the same
class shall have distinct order values).

5.2.22.
If two or more UML Associations connect the same UML Classes, they shall have “definition” and
the AssociationEnd on the side that does not have a UML meta attribute aggregation set to either
aggregate to composite (i.e. the side without the diamond) shall have “name” values.

Page 33 of 52

Platform specific model rules for XML with

XML schema definition

Page 34 of 52

6.1. General

The DATEX II modelling methodology includes a mapping of the UML data model to a transfer
syntax specified as an XML Schema Definition following the corresponding W3C standard. A model

that claims full compliance to the DATEX II specification – including the XML Schema Definition
mapping – must fulfil additional requirements on top of those specified in previous sections. These
additional requirements are captured in this section. Models fulfilling these requirements can be
mapped to a corresponding XML Schema Definition according to the mapping described in
section 4.

6.2. Requirements

6.2.1.
UML Classes with a “datatype” UML Stereotype assigned may have a “schemaType” UML
TaggedValue or they may have a “schemaTypeInclude” UML TaggedValue. They may also have
none of these two.

6.2.2.
UML Classes with a “datatype” UML Stereotype assigned may not have a “schemaType” UML
TaggedValue and a “schemaTypeInclude” UML TaggedValue at the same time.

6.2.3.
The value of a “schemaType” UML TaggedValue shall be an XML Schema Definition built-in simple
type, i.e. it shall follow the following production rule:

schema-type ::= "duration" , "dateTime" , "time" , "date" , "gYearMonth"

, "gYear" , "gMonthDay" , "gDay" , "gMonth" , "boolean" , "base64Binary"

, "hexBinary" , "float" , "double" , "anyURI" , "QName" , "NOTATION" ,

"string" , "decimal" , "normalizedString" , "token" , "language" , "Name"

, "NMTOKEN" , "NCName" , "NMTOKENS" , "ID" , "IDREF" , "IDREFS" ,

"ENTITY" , "ENTITIES" , "integer" , "nonPositiveInteger" , "long" ,

"nonNegativeInteger" , "negativeInteger" , "int" , "unsignedLong" ,

"positiveInteger" , "short" , "unsignedInt" , "byte" , "unsignedShort" ,

"unsignedByte”

6.2.4.
UML Classes with a “datatype” UML Stereotype that have neither a “schemaType” nor a
“schemaTypeInclude” UML TaggedValue themselves shall have an ancestor class (i.e. a direct
UML Generalization, UML Generalization of its UML Generalization, etc.) that has either a
“schemaType” or a “schemaTypeInclude” UML TaggedValue.

6.2.5.
The “dataValue” of a “schemaTypeInclude” UML TaggedValue shall be a URI that uniquely denotes
an XML schema type definition for a type of the same name as the UML class that the
“schemaTypeInclude” UML TaggedValue is assigned to.
Note that classes whose “schemaTypeInclude” UML TaggedValue points to a definition of a
complex type for the name of the UML Class shall not have specialisations.

6.2.6.
UML Classes with a “datatype” UML Stereotype assigned may have a “facets” TaggedValue, but
only if they are mapped to an XML schema simple type. The “dataValue” of this UML TaggedValue
shall be a valid content for the restriction element of an XML schema simple type definition of a type
restriction of the XML schema type the UML Class is mapped to.

6. Platform specific model rules for XML with XML
schema definition

Page 35 of 52

Note that the mapping type defines which facets are allowed according to the XML Schema
specifications.

6.2.7.
UML Classes that do not have a “datatype” UML Stereotype assigned may have a “rootElement’
UML TaggedValue.
Note that UML Enumerations and UML Classes that do have a “datatype” UML Stereotype
assigned shall not have a “rootElement” UML TaggedValue.

6.2.8.
Attributes of UML Classes that do not have a “datatype” UML Stereotype assigned may have an
“attribute” UML TaggedValue, which may have a “dataValue” of either “yes” or “no”, but only if their
type is mapped to an XML schema simple type and if their multiplicity is either "0..1" or "1..1".

6.2.9.
Attributes of UML Classes that do not have a “datatype” UML Stereotype assigned may have a
“schemaName” UML TaggedValue.

6.2.10.
In extension to requirement 5.2.13 for all UML Classes that do not have a “datatype” UML
Stereotype assigned, the following UML constructs shall be unique:

 UML Attribute “names”

 “names” of remote UML AssociationEnds of UML Associations connected to the class

 “qualifiers” of UML AssociationEnds directly connected to the UML Class

 names of UML Classes connected via the UML Association without an UML
AssociationEnd name on the connected end – with their UML Class name’s first letter

turned to lower case – plus

 “dataValues” of “schemaName” UML TaggedValues of attributes of this UML Class

This means that none of the listed names, qualifiers or “schemaName” values shall be lexically
equal.

Page 36 of 52

Predefined model elements

Page 37 of 52

7.1. General

Besides regulations for the use of UML constructs and a UML profile providing additional
metainformation via tagged values and stereotypes, the DATEX II modelling methodology
furthermore stipulates a certain top level model structure for all compliant UML models. These
requirements are mainly motivated by the need to create a well defined structure for DATEX II tools
aiming at supporting users.

It is in principle possible to create models in accordance to sections 3.4 and 5.2 (general and
platform independent model related requirements) that do not comply with section 6.2, effectively
creating a compliant DATEX II PIM that cannot be mapped to XML Schema Definition. In the same
way it is possible to create a UML model that complies with the requirements from sections 3.4, 5.2
and 6.2 but not with this section. Nevertheless, note that such a model cannot claim full compliance
with this specification and thus may not work with tools requiring full compliance.

7.2. Top Level model packages and classes

7.2.1.
DATEX II compliant UML models shall have one single top level UML package named
"D2LogicalModel". This top-level package shall contain a UML Class of the same name,

"D2LogicalModel".

7.2.2.
The UML Class "D2LogicalModel" shall have a “rootElement” UML TaggedValue with “dataValue”

equal to “d2LogicalModel”.

7.2.3.
The UML Class “D2LogicalModel” shall also have a UML TaggedValue named “modelBaseVersion”

that has a value that corresponds to the DATEX II model version identifier. The version in
accordance to this specification shall have the fixed value "2". The class shall furthermore have a
UML Tagged Value named "version" with a value of the full version, including minor versions. The
value of minor versions conformant to this specification shall have the form 2.n, where "n" is the
minor version number. Note that the model base version “2” denotes the second iteration of the
second generation of DATEX specifications, denoted “DATEX II”. The Arabic version number “2” is
not to be mixed up with the Roman “II” used to give this generation a name that distinguishes it
from the EDIFACT-based “DATEX” standard developed in the 1990ies, finally resulting in the
meanwhile withdrawn CEN ENVs 13106:2000 and 13777:2000.

7.2.4.
The UML Class “D2LogicalModel” may have UML TaggedValues named “extensionName” and
“extensionVersion” that contain the name of the extension(s) contained in the model – if any – and
a corresponding version identifier. These values shall be provided by the creator of the model.

7.2.5.
The DATEX II top level package "D2LogicalModel" shall have at least two sub-packages named
"General" and "PayloadPublication".

7.2.6.
The "PayloadPublication" package shall contain at least one abstract UML Class named

"PayloadPublication". It may contain further packages and classes.

7. Predefined model elements

Page 38 of 52

7.2.7.
The "D2LogicalModel" class in the "D2LogicalModel" package shall have an aggregation
association to the "PayloadPublication" class, with multiplicity "0..1" on the part side.

Figure 8— The D2LogicalModel package

Note that in conjunction with section 7.2.2 this provides a well defined entry structure into a
DATEX II XML publication, which always starts with a top level "d2LogicalModel" object that may
contain at most one concrete instance of a class specialized from "PayloadPublication".

7.2.8.
The class "PayloadPublication" shall have the following structure:

Figure 9 — The PayloadPublication package

The UML Class “PayloadPublication” shall also have a UML TaggedValue named “definition” with a

content of "A payload publication of traffic related information or associated management
information created at a specific point in time that can be exchanged via a DATEX II interface.".
The class "PayloadPublication" further has one aggregation association to another class with name
"InternationalIdentifier". The class “InternationalIdentifier” shall have a UML TaggedValue named

“definition” with a content of "An identifier/name whose range is specific to the particular country.".
Annex B: Mandatory structure elements provides the normative values for the “definition” and
“order” UML TaggedValues of the attributes of classes “PayloadPublication” and
"InternationalIdentifier".
The possible ISO 3166-1 codes related to “country” attribute values are fixed in an enumeration
type with the following literals:; be; bg; ch; cs; cy; cz; de; dk; ee; es; fi; fo; fr; gb; gg; gi; gr; hr; hu; ie;
im; is; it; je; li; lt; lu; lv; ma; mc; mk; mt; nl; no; pl; pt; ro; se; si; sk; sm; tr; va; other;

All other types referred to in this section are defined in section 7.3.

7.2.9.
The "General" package shall have at least one sub-package named "DataTypes", which again shall
have at least one sub-package named "Generic".

Page 39 of 52

7.2.10.
This "Generic" package shall at least contain two classes named "Reference" and
“VersionedReference”, with a "datatype" stereotype assigned and a "definition" tagged value that
has a value of "A reference to an identifiable managed object where the identifier is unique. It
comprises an identifier (e.g. GUID) and a string identifying the class of the referenced object." for
“Reference” and “A reference to an identifiable version managed object where the combination of
the identifier and version is unique. It comprises an identifier (e.g. GUID), a version
(NonNegativeInteger) and a string identifying the class of the referenced object.” in case of
“VersionedReference”.

7.2.11.
The "DataTypes" package and all packages contained therein shall contain only UML Classes with
the "datatype" stereotype or UML Enumerations.

7.3. Basic datatypes

Besides the "Reference" and “VersionedReference” data types, the "Generic" sub-package of the
"DataTypes" package shall contain at least the ”datatype” stereotyped UML Classes, with according
definitions and XML Schema Definition mappings, as described in Annex B: Mandatory structure
elements.

7.4. Note on the use of units in DATEX II

Modellers creating new classes with “datatype” stereotype that are intended to represent values
that have a unit assigned are advised to apply SI units as far as possible. Nevertheless, if domain
habits imply non-SI units to be commonly used and preferable to SI units, modellers are free to use
such units as well.

Page 40 of 52

Extension Rules

Page 41 of 52

8.1. General

DATEX II models enable application specific extensions. These extensions may implement
innovative concepts, and while they may happily reuse data types, enumerations, components and
even identifiable entities from an existing model, they may not seek any type of system level
interoperability with systems being implemented without being cognizant of this particular
extension. Such extensions are denoted as level C extensions.

In other scenarios, extensions may only seek to add some limited amount of application specific
business logic whilst at the same time requiring backward compatibility with an existing model.
“Compatibility” here means system level interoperability, i.e. for systems exchanging XML
messages a valid instance of an extended model shall always be also a valid instance for the core
model. This level of interoperability is in DATEX II denoted as level B extension. The levels' names
actually indicate a compatibility hierarchy where the top level (maximum compatibility) is denoted as
level A, where both interacting system use an identical model.

8.2. Requirements

8.2.1.
A model that is conforming to this specification may be extended. Extensions may either seek
backwards compatibility to an existing model (denoted 'core model' in this section), or they may
create a new model not compatible to any previous model, but nevertheless using the methodology
provided within this specification and – potentially – reusing classes taken from other, existing
models.

A compatible extension is denoted within the DATEX II specification as a level B extension.
Non compatible extensions are denoted as level C extensions.

8.2.2.
All extensions shall fully comply with all other rules presented so far in this document.

8.2.3.
An extended model shall provide extension name and version number in two tagged values called
"extensionName" and "extensionVersion" on the “d2LogicalModel” element and on any other root
level elements (defined using a “rootElement” tagged value), that shall be usable in conjunction with
extended elements.

8.2.4.
Classes belonging to an extension and having a superclass not belonging to the extension (i.e.
extension classes that inherit from the core model) shall have an "extension" tagged value with
values either "levelb" or "levelc".

Extensions that do not add new root classes (i.e. classes that have a “rootElement” tagged value)
are called “level B extensions”. These extensions shall set the “extension” tagged values to “levelb”.
They are backwards compatible with the standard model on message level.

Extensions that introduce new root classes are called “level C extensions” and shall set the
“extensions” tagged value to “levelc”.

8.2.5.
Classes belonging to an extension may not become superclasses of classes in the core model, i.e.
specialisations from a class from the extension to a class in the core model may not be added to
the model.

8. Extension Rules

Page 42 of 52

8.2.6.
UML Associations may be added to the extended model that have a core model class on the
AssociationEnd on the side that does not have a UML meta attribute aggregation set to either
aggregate to composite (i.e. the side without the diamond) and an extension class on their other
end. Thus, existing classes from the core model may become components from containers in the
extension’s model (class reuse), but classes from the extensions shall not become components of
existing containers in the core model.

8.2.7.
Data types and enumerations of the core model may be reused in extensions.

Page 43 of 52

Annex A: Short introduction to relevant
UML constructs

Page 44 of 52

This specification makes use of a methodology to express a structural definition of the DATEX II
data model called UML. The following table shows a short description of UML diagram elements
used to ensure that no misinterpretation may occur caused by ongoing development of UML.
UML 1.4 is standardized in ISO 19501. However, a version UML2 is currently prepared for
standardisation by the Object Management Group www.omg.org.

Table 4 UML notation elements

Element Name Element Description

Class

A class is a template for a
given data element which
can contain attributes. It is
a rectangle divided into
two compartments. The
upper compartment
contains the name of the
class and the lower
compartment contains a
list of attributes owned by
that class. In some
diagrams, the bottom
compartment of Attributes
may be omitted for clarity
reason. An attribute line
has a specifier “+, # or –
“ for the visibility (not used
in this standard), a name
of the attribute and after a
colon a data type and in
squared brackets the
multiplicity (which is
described in more detail
in aggregation
hereunder).
The second class in the
example depicts a class
with additional metadata
markup. This includes a
<<stereotype>> assigned
to the class, a package
prefix for a class that is
not defined in the
package where the
diagram is, A quote of a
Superclass that the class
is specialised from, and it
shows that names of
abstract classes (i.e.
classes that can not be
instantiated) are set in
italics.
Note that class names
sometimes have a ∞ in
their lower right corner,
which is not a feature of
UML but of the tools that
the classes have been
created with.

Notes

Note-box are used in the
diagrams to indicate a
normative restriction or
condition that cannot be
indicated by UML
standard notation. A note
can apply to one or more
classes or relations.
Sometimes a Note-box is
used for extra information

9. Annex A: Short introduction to relevant UML
constructs

Page 45 of 52

Element Name Element Description

eg. to tell what an “index”
is (see section on
Aggregations below).

Specialization /
Generalization

A Specialization (i.e.
Inheritance) defines the
relationship of a
specialised a general
class (derived class)
whose properties are
inherited from a more
general class (super
class). In terms of data
structures this implies that
the derived class has at
least the same attributes
as the super class and
normally will extend the
state definition of the
class with more attributes.
The reason for using
inheritance often is the
capability of having
different specialisations
from one super class.
Generalization is a
different name for the
same relationship seen in
reverse order, i.e. from
the more specialised
towards the more general
class.

Aggregation

The aggregation
describes an
owner/component
relationship. The class on
the side of the diamond
“has” an instance of the
aggregated class. The
name of that instance
(“role name”) is given on
the left side of the
connection and starts
again with the “+” as a
specifier of visibility. On
the right side the
multiplicity of that
instance is given as a
range of the allowed
count of occurrences.
Optionally, the component
can be addressed by an
index which provides the
means for the
aggregation to refer to the
owned element. Role,
index and multiplicity are
optional element, as the
second depicted
aggregation
demonstrates.

Page 46 of 52

Element Name Element Description

Composition

The composition
strengthens the type of
aggregation in a way that
the lifetime of the
composed element is the
same as the composing
class, i.e. the structure
can be seen as a
“composition”. In data
structures composition is
normally seen as an
embedded data element.
Such a component cannot
live outside the
composite.

Page 47 of 52

Annex B: Mandatory structure elements

Page 48 of 52

The DATEX II UML model has a single top level package – named “D2LogicalModel” – as a starting point into the DATEX II model. This packages itself contains
classes and sub-packages, each again containing classes and sub-packages, and so forth. To allow a controlled structure – e.g. for supporting tools – DATEX II
prescribes some mandatory structure elements to be present, which are described in this section.

10.1. Package "D2LogicalModel"

Table 5 defines those packages, classes and their attributes – as well as any tagged values assigned to these – that are mandatory in the (single top-level)
package "D2LogicalModel".

Table 5 Mandatory metadata content of the package D2LogicalModel

Name Designation
(Type)

Definition Datatype Multiplicity

D2LogicalModel DATEX II logical model
(Class)

The DATEX II logical model comprising exchange, content
payload and management sub-models.

— —

rootElement Root element
(Tagged Value of Class)

UML TaggedValue with “dataValue” equal to

“d2LogicalModel”; this is the standard entry point into an
XML coded instance of the DATEX II model

String (implicit) —

modelBaseVersion Model Base version
(Tagged Value of Class)

UML TaggedValue with “dataValue” that corresponds to

the DATEX II model version identifier.
String (implicit) —

extensionName Extension name
(Tagged Value of Class)

UML TaggedValue with “dataValue” providing the name of

the extension(s) contained in the model.
String (implicit) —

extensionVersion Extension version
(Tagged Value of Class)

UML TaggedValue with “dataValue” providing the

corresponding version identifier.
String (implicit) —

General —
(Package)

Package which contains the actual DATEX II domain model,
i.e. reusable classes, enumerations and datatypes

— —

PayloadPublication —
(Package)

This package contains the different publications that can be
exchanged via a DATEX II interface.

— —

10. Annex B: Mandatory structure elements

Page 49 of 52

10.2. Package "PayloadPublication"

Table 6 defines those packages, classes and their attributes – as well as any tagged values assigned to these – that are mandatory in the package
"PayloadPublication".

Table 6 Mandatory metadata content of the package PayloadPublication

Name Designation
(Type)

Definition Datatype Multiplicity

PayloadPublication Payload publication
(Class)

A payload publication of traffic related information or
associated management information created at a specific
point in time that can be exchanged via a DATEX II
interface.

— —

defaultLanguage Default language
(Attribute)

The default language used throughout the payload
publication.

Language 1

feedDescription Feed description
(Attribute)

A description of the information which is to be found in the
publications originating from the particular feed (URL).

MultilingualString 0..1

feedType Feed type
(Attribute)

A classification of the information which is to be found in the
publications originating from the particular feed (URL).
Different URLs from one source may be used to filter the
information which is made available to clients (e.g. by type
or location).

String 0..1

publicationTime Publication time
(Attribute)

Date/time at which the payload publication was created. DateTime 1

publicationCreator Creator of the
publication
(Association)

This association describes the entity that has created the
publication by providing the country and an identifier that is
supposed to be unique within this country.

— 1

InternationalIdentifier International identifier
(Class)

An identifier/name whose range is specific to the particular
country.

— —

country Country ID ISO 3166-1 two character country code. CountryEnum
Defined Literals:
be; bg; ch; cs; cy; cz; de;
dk; ee; es; fi; fo; fr; gb; gg;
gi; gr; hr; hu; ie; im; is; it;
je; li; lt; lu; lv; ma; mc; mk;
mt; nl; no; pl; pt; ro; se; si;
sk; sm; tr; va; other;

1

nationalIdentifier National Identifier Identifier or name unique within the specified country. String 1

Page 50 of 52

10.3. Package "General"

Table 7 defines those packages, classes and their attributes – as well as any tagged values assigned to these – that are mandatory in the package "General"

Table 7 Mandatory metadata content of the package General

Name Designation Definition Type Multiplicity

DataTypes —
(Package)

A collection of information describing data types that are
reused elsewhere in the DATEX II model.

— —

10.4. Package "DataTypes"

Table 8 defines those packages, classes and their attributes – as well as any tagged values assigned to these – that are mandatory in the package "DataTypes"

Table 8 Mandatory metadata content of the package DataTypes

Name Designation Definition XSD mapping Multiplicity

Generic —
(Package)

A collection of generic data type descriptions. These are, in general,
mathematical concepts or widely used computer science concepts, without
specific specified units.

— —

Page 51 of 52

10.5. Package "Generic"

Table 9 defines those packages, classes and their attributes – as well as any tagged values assigned to these – that are mandatory in the package "Generic"

Table 9 Mandatory metadata content of the package Generic

Name Designation Definition XSD mapping

Boolean —
(Datatype)

Boolean has the value space required to support the mathematical concept
of binary-valued logic: {true, false}.

xs:boolean

Date —
(Datatype)

A combination of year, month and day integer-valued properties plus an
optional timezone property. It represents an interval of exactly one day,
beginning on the first moment of the day in the timezone, i.e. '00:00:00' up
to but not including '24:00:00'.

xs:date

DateTime —
(Datatype)

A combination of integer-valued year, month, day, hour, minute properties, a
decimal-valued second property and a timezone property from which it is
possible to determine the local time, the equivalent UTC time and the
timezone offset from UTC.

xs:dateTime

Float —
(Datatype)

A floating point number whose value space consists of the values m × 2^e,
where m is an integer whose absolute value is less than 2^24, and e is an
integer between -149 and 104, inclusive.

xs:float

Integer —
(Datatype)

An integer number whose value space is the set {-2147483648, -
2147483647, -2147483646, ..., -2, -1, 0, 1, 2, ..., 2147483645, 2147483646,
2147483647}.

xs:integer

Language —
(Datatype)

A language datatype, identifies a specified language by an ISO 639-1 2-
alpha / ISO 639-2 3-alpha code.

xs:language

MultilingualString —
(Datatype)

A multilingual string, whereby the same text may be expressed in more than
one language.

see
MultilingualString.xsd

NonNegativeInteger —
(Datatype)

An integer number whose value space is the set {0, 1, 2, ..., 2147483645,
2147483646, 2147483647}.

xs:nonNegativeInteger

Reference —
(Datatype)

A reference to an identifiable managed object where the identifier is unique.
It comprises an identifier (e.g. GUID) and a string identifying the class of the
referenced object.

see
Reference.xsd

String —
(Datatype)

A character string whose value space is the set of finite-length sequences of
characters. Every character has a corresponding Universal Character Set
code point (as defined in ISO/IEC 10646), which is an integer.

xs:string

Time —
(Datatype)

An instant of time that recurs every day. The value space of time is the
space of time of day values as defined in § 5.3 of [ISO 8601]. Specifically, it
is a set of zero-duration daily time instances.

xs:time

Url —
(Datatype)

A Univeral Resource Locator (URL) address comprising a compact string of
characters for a resource available on the Internet.

xs:anyURI

VersionedReference —
(Datatype)

A reference to an identifiable version managed object where the
combination of the identifier and version is unique. It comprises an identifier
(e.g. GUID), a version (NonNegativeInteger) and a string identifying the
class of the referenced object.

see
VersionedReference.xsd

Page 52 of 52

Content of file MultilingualString.xsd:
<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns:D2LogicalModel="http://datex2.eu/schema/2/2_0"

 xmlns:xs="http://www.w3.org/2001/XMLSchema"

 targetNamespace="http://datex2.eu/schema/2/2_0"

 elementFormDefault="qualified" attributeFormDefault="unqualified">

 <xs:complexType name="MultilingualStringValue">

 <xs:simpleContent>

 <xs:extension base="D2LogicalModel:MultilingualStringValueType">

 <xs:attribute name="lang" type="xs:language"/>

 </xs:extension>

 </xs:simpleContent>

 </xs:complexType>

 <xs:complexType name="MultilingualString">

 <xs:sequence>

 <xs:element name="value" type="D2LogicalModel:MultilingualStringValue" maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:complexType>

 <xs:simpleType name="MultilingualStringValueType">

 <xs:restriction base="xs:string">

 <xs:maxLength value="1024"/>

 </xs:restriction>

 </xs:simpleType>

</xs:schema>

Content of file Reference.xsd:
<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns:D2LogicalModel="http://datex2.eu/schema/" xmlns:xs="http://www.w3.org/2001/XMLSchema"

targetNamespace="http://datex2.eu/schema/" elementFormDefault="qualified" attributeFormDefault="unqualified">

 <xs:complexType name="Reference">

 <xs:attribute name="id" type="xs:string" use="required"/>

 </xs:complexType>

</xs:schema>

Content of file VersionedReference.xsd:
<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns:D2LogicalModel="http://datex2.eu/schema/" xmlns:xs="http://www.w3.org/2001/XMLSchema"

targetNamespace="http://datex2.eu/schema/" elementFormDefault="qualified" attributeFormDefault="unqualified">

 <xs:complexType name="VersionedReference">

 <xs:attribute name="id" type="xs:string" use="required"/>

 <xs:attribute name="version" type="xs:string" use="required"/>

 </xs:complexType>

</xs:schema>

